What Do You Get when You Mix AI, PR, and HR?

What do you get when you mix #AI, #HR, and #PR? Remixed #incentives probably…not necessarily in a good way. pic.twitter.com/FpJvZuhHtS
— ivanjureta (@ivanjureta) February 1, 2018
As currently drafted (2024), the Algorithmic Accountability Act does not require the algorithms and training data used in an AI System to be available for audit. (See my notes on the Act, starting with the one here.) The way that an auditor learns about the AI System is from documented impact assessments, which involve descriptions…
In the context of human decision making, a decision is a commitment to a course of action (see the note here); it involves mental states that lead to specific actions. An AI system, as long as it is a combination of statistical learning algorithms and/or logic, and data, cannot have mental states in the same…
In a previous note, here, I wrote that one of the requirements for Generative AI products/services in China is that if it uses data that contains personal information, the consent of the holder of the personal information needs to be obtained. It seems self-evident that this needs to be a requirement. It is also not…
Section 5 specifies the content of the summary report to be submitted about an automated decision system. This text follows my notes on Sections 1 and 2, Section 3 and Section 4 of the Algorithmic Accountability Act (2022 and 2023). This is the fourth of a series of texts where I’m providing a critical reading…
Opacity, complexity, bias, and unpredictability are key negative nonfunctional requirements to address when designing AI systems. Negative means that if you have a design that reduces opacity, for example, relative to another design, the former is preferred, all else being equal. The first thing is to understand what each term refers to in general, that…
Many people spent a lot of time, across centuries, trying to build good explanations, and trying to distinguish good from bad ones. While there is no consensus on what “explanation” is (always and everywhere), it is worth knowing what good explanations may have in common. It helps develop a taste in explanations, which is certainly helpful given how frequently you may need to explain something, and how often others offered explanations to you.