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Abstract. Innovative companies need an agile approach for the engi-
neering of their product requirements, to rapidly respond to and exploit
changing conditions. The agile approach to requirements must nonethe-
less be systematic, especially with respect to accommodating legal and
nonfunctional requirements. This paper examines how to support a com-
bination of lightweight, agile requirements which can still be systemat-
ically modeled, analyzed and changed. We propose a framework, RE-
KOMBINE, which is based on a propositional language for requirements
modeling called Techne. We define operations on Techne models which
tolerate the presence of inconsistencies in the requirements. This para-
consistent reasoning is vital for supporting delayed commitment to par-
ticular design solutions. We evaluate these operations with an industry
case study using two well-known formal analysis tools. Our evaluations
show that the proposed framework scales to industry-sized requirements
models, while still retaining (via propositional logic) the informality that
is so useful during early requirements analysis.
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1 Introduction

It is increasingly uncommon for software systems to be fully specified before im-
plementation begins. This is because uncertainty about the right requirements
is inescapable. Furthermore, it is highly desirable to avoid premature commit-
ment by being able to change/revise requirements throughout the development
lifecycle. Being flexible in this fashion is a source of competitive advantage for a
business; for example, by delivering the correct product before competitors. The
notion that one should engage in what has been called “big design up front”
as part of the design activity is no longer defensible [1], since inevitably the
plan must be abandoned, or at best revised. A variety of studies and experi-
ence reports (most recently [2]) have shown that requirements changes are very



expensive to accommodate and constitute the most frequent cause of project
failures.

There is a shift, instead, to models of software development which avoid
premature commitment to decisions. The central tenet of these models, includ-
ing most Agile methodologies, is that requirements are discussed iteratively.
These requirements are often manifested as very brief user stories, which serve
as conversation starters with business representatives. A major concern with such
lightweight requirements “engineering” is that non-functional requirements, such
as security, are often neglected since system functionality is the focus [3].

While this lightweight approach to Requirements Engineering (RE) has be-
come popular in many segments of industry, the IEEE standard for software
requirements [4] uses words like “correct”and “unambiguous” to describe its
recommended practice for RE. Thus, many previous approaches to the problem
of system specification have methodological constraints insisting that conflicts
and obstacles be resolved before solutions are identified. The past decade has re-
vealed that in most cases these criteria are rarely, if ever, possible to achieve. In
this paper we argue that the above shift demands a much more flexible approach
to requirements modeling and analysis.

To illustrate the usefulness of deferring conflict resolution, consider the re-
quirements fragment represented in Fig. 1. The figure represents the require-
ments (shown as ovals) for the business (“optimize sales”) and imposed require-
ments from an applicable security standard (PCI-DSS, which we discuss fully in
Section 4.1). The red, X-headed relation between goals “..WEP” and “4.1.1...”
represents a conflict. In this case, the conflict is between the business use of
the Wireless Encryption Protocol (WEP) and the security problems with WEP.
Existing approaches to requirements analysis either (i) insist that the conflict
is resolved before proceeding with further reasoning (e.g., KAOS [5]), or (ii)
represent the conflict as tradeoffs for higher-level goals (such as those in [6]).
By contrast, our approach supports two possible courses of action. Because our
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Fig. 1. Fragment of the requirements model from the payment card case. (Section 4.1)

framework is paraconsistent, it can (1) isolate and ignore the conflict for the time



being. This is useful if, for example, the need for compliance is not immediate,
and time and money can be better spent elsewhere. The other course of action
is to (2) proceed with one of the conflicting choices, and insist that the model
be later revised to support that choice. In this case, we would ask for alternative
solutions for optimizing sales. In the example, we might abandon mobile pay-
ment terminals in favour of mobile apps, or use Bluetooth rather than WEP for
wireless transmission. In this way the stakeholders are presented with a range of
options for proceeding.

In this paper we introduce a framework, RE-KOMBINE, which supports this
shift to flexibility. The framework represents possibly contradictory requirements
as assertions about the current state of the requirements model, allowing us to
reason paraconsistently about requirements problems1, thus helping to accom-
modate flexible, agile decision-making. The chief advantage of our approach is
that it permits derivation of useful knowledge about problems of interest in the
moment, while postponing decisions about currently inconsistent states of the
problem until a decision must be made.

This paper makes the following contributions:

– identifies the importance of accommodating variability by supporting para-
consistency in software development, and modifying the way in which the
requirements are queried.;

– proposes a framework, RE-KOMBINE, for finding solutions to possibly incon-
sistent requirements problems in a goal-oriented framework;

– explicitly introduces paraconsistent reasoning into a prototype tool;
– evaluates the framework with an industrial case study.

In [7], we introduced the notion of a Requirements Engineering Knowledge
Base rekb for maintaining a requirements model. In this paper, we build on the
notion of an rekb to handle the case where problems are changing and possibly
inconsistent (i.e., contain contradictory assertions).

2 Background

2.1 The Requirements Problem

We start from Zave & Jackson’s [8] definition of the requirements problem: given
requirements R, and domain assumptions D, find specification S, satisfying D∪
S ` R under the condition that D ∪ S is consistent.

In our work on the Techne language [9, 7], requirements problems are struc-
tured, representing notions ranging from high-level requirements (“sell more
products”) to low-level tasks (“use Moneris payment terminals”). A key part
of solving requirements problems is therefore to find ways to refine requirements
so they are eventually reduced into tasks, and to record conflicts between re-
quirements. We therefore re-state the requirements problem as the search for
tasks T and refinements/realizations/constraints R that can be added to the

1 In other words, local inconsistencies are not propagated globally, “polluting” all
inferences, as in standard logic.



world knowledge/domain assumptions D, such that requirements, captured as
goals G, are satisfied, i.e.,

D ∪ T ∪R ` G (1)

Techne proposes to identify all candidate solutions to the problem — all sets T
which achieve the goals.2

Techne’s rekb accepts the following as well-formed formulae:

formula ::= atom | (

n∧
i=1

atomi)→ atom | (

n∧
i=1

atomi)→ ⊥ (2)

where atoms are propositions (un-analyzed natural language sentences). Impli-
cations of the form β → ⊥ represent conflicts between the atoms in β, while
those of the form β → b encode refinements/realizations (where b is an atom).

2.2 Inconsistency and Conflict

The ability to represent conflicts between requirements is an essential part of
any requirements modeling language. In formal logic, a theory T is said to be
inconsistent if one can derive False/⊥, from T . Classical logic trivializes in the
sense that anything can be derived from an inconsistent T (ex falso quodlibet).
This makes classic, inconsistent rekb useless for solving requirements problems,
and is the reason why the premise of the sequent ` in (1) must be consistent.

There are several ways to interpret the existence of a conflict relation between
requirements A and B, recorded as A ∧ B → ⊥. The conflict might mean that
neither requirement can be satisfied. The conflict could also mean that at most
one, but not both can be satisfied. Finally, it could be more drastic, and suggest
that the entire model must be resolved to remove the conflict. Techne adopts the
second attitude. Part of searching for solutions to Techne requirements problems
is to find ways to ensure at most one of A or B, where A and B are in conflict,
is satisfied.

In the requirements engineering research community, the term “conflict” has
typically been used to denote social disagreement over the nature of the system
requirements. Robinson et al. [10] define it as “requirements held by two or more
stakeholders that cause an inconsistency”. The term “inconsistency” denotes the
technical, formal existence of a “broken rule” [11]. Zowghi and Gervasi [12] show
that “consistency” is causally related to requirements “completeness”: a more
complete requirements document is often less consistent (since more competing
requirements are introduced). In Techne, the conflict relation is formally between
two or more requirements, and not between stakeholders. Any conflicts between
stakeholders, such as a disagreement over terminology, are the purview of other
techniques (e.g., model merging). In this paper, conflict is the presence of ⊥,
while inconsistency is when false (⊥) is derived. Ultimately, we not only want to
permit conflict (and possibly inconsistency) to be represented; we also want to
specify what we ought to do when inconsistency is detected.

2 The second step, of selecting among the candidates a solution using some techniques
to rank alternatives, is not discussed in this paper.



Classical languages, such as propositional logic and first-order logic, cannot
tolerate inconsistency, in the sense that no useful reasoning can be done in its
presence, and yet, in the requirements engineering domain, tolerating inconsis-
tency is important. Nuseibeh et al [13] give a few important reasons:

– to facilitate distributed collaborative working,
– to prevent premature commitment to design decisions,
– to ensure all stakeholder views are taken into account,
– to focus attention on problem areas [of the specification].

Perhaps the most useful reason for the case of evolving requirements problems
is the second one. Avoiding premature commitment, in the sense of Thimbleby
[14], means to wait until the “last responsible moment” to make decisions regard-
ing the system. Not only does this apply to deciding how to satisfy our goals, but
also in the choice of those goals themselves. Tolerating inconsistency therefore
allows us to continue to make progress on design (and even implementation)
while fire-walling the conflicting parts of the system. Section 4.1 will show how
this becomes crucial in our case study.

In our case, part of tolerating inconsistency in the rekb involves paraconsis-
tent reasoning. A paraconsistent logic, broadly, is one which does not trivialize
in the presence of inconsistency. Section 3.2 will show how we define operators
on the knowledge base that continue to give meaningful answers even when in-
consistency is present.

3 RE-KOMBINE

We now define a framework for managing the inconsistency in requirements
problems that arise due to variability and evolution. We will do so by defining
below two fundamental operators that can be applied to an rekb in order to find
solutions to the requirements problem, even in the presence of inconsistency. But
before doing so, we need some formal machinery and discussion for its motivation.

3.1 Paraconsistent Reasoning on Requirements Problems

We first present a general approach to defining what it means to draw conclusions
from a possibly inconsistent set of assumptions, denoted by the |∼ symbol. To
define |∼ , we go back to one of the early attempts to deal with paraconsistent
reasoning, that of Rescher and Manor [15]. Given a theory ∆, define MC(∆) as
the set of maximal consistent subsets of ∆, and then consider “weak” (a.k.a.
“credulous”) consequences those that follow from one element of MC(∆), while
“inevitable” (a.k.a. “cautious, skeptical”) ones hold in all such maximal subsets.

We propose the following definition

Definition 1. ∆ |∼ S iff there exists Π ⊆ ∆ such that

1. Π ∈ MC(∆),
2. Π contains all implications in ∆, (written Implications(∆)),
3. Π ` S



Given domain theory D and a specific set of (high-level) goals G0 which we
are trying to achieve, a solution to the requirements problem will then be said
to consist of a set of refinements/conflicts R0 and a set of task atoms T0 such
that

D ∪R0 ∪ T0 |∼ G0 (3)

which replaces the original equation (1).
The motivation for condition 2. in Definition 1, which is the one addition

to the original “weak” entailment in [15], is specific to Requirements Engineer-
ing, particularly the Techne family of languages and their methodology: In any
specific situations we are looking for a consistent set of tasks and goals which
solve the requirements problem. If we allow implications to be excluded, then
we might miss inconsistencies between these atoms. Moreover, a set of Horn
clauses is always satisfiable/consistent, so requiring condition 2. does not affect
the existence of maximal consistent subsets.

The above definition is “credulous” since it depends only on the existence of
some set Π, from which S can be derived. In contrast, much of non-monotonic
reasoning and database reasoning with inconsistent data deals with the “skep-
tical” mode: S must be derivable from all maximally consistent Π of the above
form. This distinction is less significant in requirements problems: since we are
considering possible future states of the world, we are making assumptions about
which tasks to implement. In the paraconsistent case, we are identifying indi-
vidual sets of tasks which solve the requirements problem. Thus, the skeptical
approach is overly constraining, since the presence of a single solution is all
we need for the implementation phase. Implicitly, what the sceptical semantics
for paraconsistency in requirements engineering do is restrict the nature of the
eventual system we build. In RE-KOMBINE, the only constraint imposed is that
implications may not be discarded.

It remains to consider whether we want to be able to obtain solutions under
all conditions, or whether there are additional criteria for solutions to make
sense. Consider the following criteria:

D ∪R0 0 ⊥ (4)

D ∪R0 ∪G0 0 ⊥ (5)

D ∪R0 ∪ T0 0 ⊥ (6)

Violating criterion (4) indicates the presence of something we call ‘blockers’:
since domain assumptions hold, then no “reasonable” solution can ever exist if
criterion (4) does not hold. We also want to insist that the goals we are trying
to achieve (i.e.,

∧
G0) are mutually consistent in view of the background theory,

criterion (5). Finally, we expect that not only can we achieve those goals, but
that there are consistent sets of tasks which will do so, criterion (6).

In order to achieve the above, in RE-KOMBINE we restrict the asserted mem-
bers of the knowledge base theory to be elements of D and R. Additional for-
mulas that are implications can be added to R and D. We must include domain
assumptions because, at least for now, such atoms are universally true, and thus
always relevant. We include refinements and conflicts because they form the set



R, mentioned above, and presumably reflect some domain knowledge about how
requirements interact.3

In some requirements problems we may wish to speculate about certain low-
level goals being true or tasks having to be carried out; e.g., “suppose goal g1
were achieved; what else is necessary to achieve top-level goal g0?”. In that case
we may “hypothetically” assert these atoms by including them in R (“r: goal
g1 is achieved”), which makes it appear that we assume that the corresponding
goal/task has been achieved.

The operator specifications below follow the above discussion, by alerting the
user if condition 5 (and hence 4) is violated. Condition 6 will not be violated by
virtue of Definition 1, and equation (3).

3.2 Operators for Paraconsistent Requirements Problems

RE-KOMBINE is defined in a functional style, specifying update and query opera-
tors on the requirements knowledge base (rekb). In [7] we introduced operators
for consistent requirements problems, but the need for consistency ruled out the
flexible approach we describe in this work. In particular, the crucial operators
which help users select and decide on solutions to their requirements problems
are specified using paraconsistent consequence ( |∼ ) introduced above. If the ar-
guments to the operation are themselves (internally) inconsistent, the reasoner
will generate an exception. We describe the operators in the style of Javadoc by
naming the parameters and their types, etc. We use ℘(S) to represent the set of
all subsets of S (powerset). Examples from a case study are shown in Section 4.

Operation 1 — PARACONSIST-MIN-GOAL-ACHIEVEMENT

@param wantedG : ℘(goals)
@return TaskSets : ℘(℘(tasks)) consisting of all sets S of tasks such that:
@effect rekb ∪ S |∼

∧
wantedG, and no subset of S has this property.

@throws exception if wantedG ∪ Implications(rekb) ` ⊥.

The PARACONSIST-MIN-GOAL-ACHIEVEMENT operation supports what has
been called “backward reasoning” in the RE literature (e.g., [6]). Backward rea-
soning sets some high-level goals as desiderata, and determines which tasks can
accomplish those goals. PARACONSIST-MIN-GOAL-ACHIEVEMENT is an abductive
search. Abduction only works from consistent theories, so the classical version
of this operation generates an exception if the theory rekb is inconsistent. Since
Implications(rekb) is always consistent, the above modified version excludes as-
pects of rekb that may be inconsistent on their own – hence the paraconsistent
behaviour of our operator. Note that the minimality of S in the above specifi-
cation also prevents |∼ from choosing S that have conflicting tasks, and gives
preference to tasks specified as obligatorily occurring in rekb.

3 Although arguably such refinements are not domain knowledge, but also part of the
desired state of affairs. However, for the purposes of this paper we consider them
assumptions.



Example. Consider the requirements problem which can be represented as R =
{D ∧E → B,F ∧H → C,C → A,B → A,E ∧F → ⊥},D = {E,F}. If we then
define G = wantedG = {A}, the problem is classically inconsistent, since there
is a conflict when we identify potential solution sets which must contain the
domain assumptions E and F . Paraconsistently, however, we can identify two
separate answers to the operation: S1 = {D,E},S2 = {F,H}. This supports
our desire to continuing to reason despite a conflict.

In the requirements problem, we are interested in optimality with respect to
the people communicating the requirements for the new system (stakeholders).
In that context, the stakeholder may not be content with a subset-minimal imple-
mentation that satisfies the mandatory requirements (as returned by PARACONSIST-

MIN-GOAL-ACHIEVEMENT). Rather, he or she is interested in implementations
which also satisfy other, non-mandatory goals. Furthermore, while still subset-
minimal with respect to tasks, we add the constraint that the set of goals achieved
is maximized. This answers the question, “If I wish to accomplish the following
extra goals, in addition to certain mandatory requirements, what are the minimal
sets of tasks I must perform?”

Operation 2 — PARACONSIST-GET-CANDIDATE-SOLUTIONS

@param mandG : ℘(goals)

@param wishG : ℘(goals)

@return set of pairs 〈solnT, satG〉, where solnT is a set of tasks, and satG is a
set of goals such that

@effect 1) rekb ∪ solnT |∼ satG; 2) satG = mandG (the mandatory goals) ∪
wishG0 (a subset of the optional goals wishG), such that satG ∪ Implications(rekb)
is consistent; 3) satG is maximal with respect to the above properties; 4)
solnT is subset-minimal to achieve the above.

@throws an exception if mandG is inconsistent with Implications(rekb).

Operation PARACONSIST-GET-CANDIDATE-SOLUTIONS requires that the set
solnT paraconsistently derive satG, i.e., there is a consistent subset of rekb,
which includes implications, from which one can classically prove satG, using
solnT.

The above operators illustrate how paraconsistency is a fairly natural con-
cept in solving the requirements problem. Our focus remains on the appropriate
sets to return, but we adopt a credulous approach in which a single consistent
subset of the larger requirements problem can be used to derive our mandatory
requirements. This model of operation also maps nicely to our choice of the
ATMS for implementation, as we discuss in the following subsection.

Note that there are more operators than the ones we described here, although
we believe these are the two most relevant to variability in requirements. In
particular, operators to calculate so-called “forward-reasoning” [6], using input
tasks and a set of high-level goals, are useful (and more tractable).



3.3 Tool-supported RE-KOMBINE

We have implemented the RE-KOMBINE framework using an Assumption-based
Truth Maintenance System (ATMS) [16]. An ATMS naturally supports our sim-
ple definition of well-formed formulae, and support paraconsistent reasoning.
However, other choices are possible, including the use of weighted SATisfiability
solvers, as used in Sebastiani et al.[6].

De Kleer [16] proposed the ATMS. In an ATMS each node has associated
a set of possible explanations, in which that node is :IN (interpreted as true).
Explanations are sets of assumptions which ultimately justify that node (i.e.,
from which that node can be derived from assumptions via definite Horn-rules
called justifications.) The label for a given node N will typically be labelled with
explanations: all sets of assumptions for which it can be derived :IN.

Most importantly, these sets are minimal – no nodes can be removed from
such an explanation without losing the full justifications, and the sets are con-
sistent in the sense that no contradictions (⊥) can be derived from them. We
encode atoms in RE-KOMBINE as ATMS nodes; atoms with sort TASK become
assumptions, and implications or contradictions become justifications and con-
tradictions, respectively, with a special CONTRADICTION node added as nec-
essary. Cycles are supported in the ATMS because of short-circuit evaluation. If a
node has a label which is the same as a possible new label, evaluation terminates.

Listing 1 gives an example of the domain-specific language (DSL) for captur-
ing requirements problems in Techne. The operation declare-atomic introduces
(but does not assert) goals in the model, while assert-formula defines inference or
conflict relations, in this case between g0 and its antecedents. The tool supports
a graphical front-end (as seen in the images below) with a translation to the DSL,
and output of the reasoning is likewise textual or graphical. In agile software de-
velopment, in particular, it is important that the process artifacts be perceived
as nearly invisible (hence the frequent use of index cards and whiteboards). RE-
KOMBINE, while clearly more onerous in terms of ease of use, makes the tradeoff
that this flexibility nonetheless needs longer-term support, particularly in more
complex domains.

We are currently integrating RE-KOMBINE with a commercial requirements
tool, where the intention is to permit requirements to be captured easily and
managed using RE-KOMBINE. The workflow is for requirements elicitation to
proceed as usual, with the sole exception being that the analyst or developer
enters the requirements as Techne statements (which are simple propositional
statements with formal relations). Then, during the prioritization phase at the
beginning of a development iteration, the RE-KOMBINE tool can provide answers
regarding which requirements/features/user stories to work on.



(defvar
g0 (declare-atomic nil ”Comply with PCI DSS” :GOAL *rekb*)
; ...
(assert-formula gc1.2.1.2.1 (list g0) :DA *rekb*)

Listing 1: DSL for introducing Techne formulae into RE-KOMBINE.

Another approach is using Qualitative Goal Models, introduced in [17]. They
support qualitative (strong, weak) evidence both in favor and against proposi-
tional goals. The solution of Giorgini et al. [18] is to formalize this by replac-
ing each proposition g, standing for a goal, by four propositions (FSg, PSg,
PDg, FDg) representing that there is full (resp. partial) evidence for the satis-
faction (resp. denial) of g. A traditional implication such as p ∧ q → r is then
translated into a series of implications connecting these new symbols, including
FSp ∧ FSq → FSr, PSp ∧ PSq → PSr, as well as FDp → FDr, FDq → FDr,
etc. The important point is that, first, the result is a classical propositional the-
ory, but one where there is never any inconsistency that would cause everything
to be inferred, since conflicts between a and b are recorded by axioms of the
form FSa → FDb, and it is quite consistent to have both FSx and FDx be true
at the same time (there is strong evidence both for and against x). In fact, the
above can be viewed as a many-valued logic, where symbol g can be assigned a
subset of the truth values {FS, PS, PD,FD}.

Giorgini et al.’s approach is extended by Sebastiani et al. [6], including axioms
for avoiding conflicts of the form FSa ∧ FDa. If we represent (for example) the
Techne conflict relation A ∧ B → ⊥ as their (FSA → FDB) ∧ (FSB → FDA),
this supports the detection of conflicts of the form “the solution may not contain
both goal A and goal B together”. By using a MinWeight SAT solver which
can minimize the number of asserted atoms involved in the solution, and a
model which avoids the use of partial contributions, one can simulate portions
of the RE-KOMBINE framework. We use this tool to compare with the ATMS
implementation in Section 4.2.

4 Evaluating RE-KOMBINE

We begin with a description of our case study of variability and evolution in
requirements found in the Data Security Standard (henceforth PCI-DSS) [19],
an industry standard which regulates security of credit card transactions. We use
this case study to first illustrate how paraconsistency is essential for solving the
requirements problem in a specific example. We then discuss how our framework
scales to industrially relevant sizes.

4.1 Case Study: Payment Card Standards and Requirements
Variability

PCI-DSS version 2.0 was released in October, 2010, and is currently in force.
There is a two-year cycle between major revisions, with a three month announce-
ment window immediately prior to the new standard coming into force. This



provides organizations time to achieve compliance. PCI-DSS has the following
sub-goals for compliance: (i) Build and maintain a secure network, (ii) Protect
cardholder data, (iii) Maintain a vulnerability management program, (iv) Imple-
ment strong access control measures, (v) Regularly monitor and test networks,
(vi) Maintain an information security policy.

PCI-DSS is well-suited for representation as a requirements problem. We map
requirements as goals, and constraints as domain assumptions. Tasks are used
to represent compliance tests in the PCI-DSS. A solution to the requirements
problem is a series of tasks which can pass the compliance audit, a compliance
strategy. For this paper, the relevance of this case study is in describing how the
changes to the standard are realized in individual organizations, which also have
entirely separate sets of organization-specific requirements. This was shown in
Fig 1, earlier: the organization-specific goals must be related to the standard’s
compliance goals. We then translate this to a domain-specific language (DSL)
which can be run against the ATMS or MinWeightSAT solvers.

Solving the PCI-DSS Requirements Problem We now illustrate how
changes in an external standard, such as PCI-DSS, might lead to inconsistency
in an organizational requirements model. We focus in particular on how the
RE-KOMBINE tool can use paraconsistent reasoning to support strategic, change-
tolerant decisions.

Let us return to the example from Section 1, shown again in Fig. 2. We
showed that the mere presence of the conflict relation would cause classical
reasoning to fail. In RE-KOMBINE, we are able to continue to search for solutions
in spite of the conflict. Recall that the requirements problem has been defined
as D∪R∪T |∼G. The state of the rekb, that is, the nature of the requirements
problem of Fig. 2, is as follows.

Set R contains all implications and conflicts, among others the refinement
of Optimize Sales by Use Mobile App and the conflict between Use WEP and
WEP Prohibited. Set G contains the twin goals of Optimize Sales and Encrypt
Transmission, since in this case study the business would like to achieve both
compliance and business success. There is only a single task identified in T , the
use of Dione XPlorer terminals. For this fragment there are no domain assump-
tions in D. Finally, we add to R the assumptions that goal Use WEP is already
satisfied, i.e., currently the state of affairs for the business network, and that we
must abide by the PCI-DSS requirements, i.e., that goal WEP Prohibited is also
satisfied. This would be the case if the business was compliant prior to the June
2010 enforcement of the restriction on WEP.

In this fragment of the model we are seeking to find tasks T or assumptions
for R such that a subset of goals in G are satisfied. One way to do this is with
the following operation. Call PARACONSIST-MIN-GOAL-ACHIEVEMENT with the
argument wantedG = {Optimize Sales, Encrypt Transmission}. RE-KOMBINE per-
forms an abductive search to find minimal sets of tasks or assumptions which
will satisfy the conjunction of these goals. In this case, possible answers, re-
turned as TaskSets, include {Use Mobile App, WEP Prohibited}, {WEP Prohib-



ited,DioneXplorer}. Solutions which include both assumptions which lead to con-
flict are excluded. In this case, since the PCI-DSS is external and presumably
compliance is essential, the business would choose to phase out WEP, using one
of these strategies instead. Again, paraconsistency in RE-KOMBINE allows us to
maintain the complete model, adding or retracting tasks as required.
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Use mobile 
terminals

4.1.1 … The use of WEP as a 
security control was 

prohibited as of 30 June 2010
Use WEP for 
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4.1  Use strong 
cryptography and 
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PCI-DSS Requirements
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Fig. 2. WEP fragment of the model from the payment card case showing a possible
configuration. Grey indicates satisfied goals.

In the PCI-DSS there are multiple types of changes we must accommodate,
including variations in adopting best practices the standard identifies (such as
application security practices). There is also provision for variation within an
organization in proving compliance (i.e., selecting a compliance strategy). In
PCI-DSS these are known as compensating controls, and they define solutions
for proving compliance where domain assumptions in the standard are invalid.
For example (numbers in parentheses refer to the PCI-DSS standard, v2), in
environments that cannot prevent multiple root logins (requirement 8.1), the
organization is permitted to use SUDO (a command to give an ordinary user
full but temporary privileges), just as long as the system carefully logs each
access. The reason to prevent root login is that the use of a super-user account
is opaque, without this control: it is not clear what physical access is behind the
root account.

Fig. 3 captures this fragment of the requirements problem. Assume there
is a call to PARACONSIST-GET-CANDIDATE-SOLUTIONS with wishG = {Use ex-
isting hardware} and mandG = {Assign Unique ID}. Then the result is the tu-
ple 〈 solnT:{Log Access,Use SUDO,Use AS/400 Servers}, satG:{Use existing hard-
ware,Assign Unique ID}〉. This reflects the (simplistic) result that the best way to
satisfy the wished-for goal to use existing hardware is to apply for the compen-
sating control of logging access. Again, we have placed Use AS/400 Servers into
R as an assumption, since it describes the current state of affairs. In this case
a conflict exists if we also assume that the use of Centralized identity manage-
ment is satisfied. The paraconsistent operator has allowed us to find alternative
solutions to this inconsistent state.
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Fig. 3. The graphical representation of the compensating controls example.

4.2 Demonstrating Scalability

In [7] we showed that the ATMS reasoner was scalable. It can return decisions
in less than 100 seconds on random models that were as large as six hundred
requirements and two hundred relations. In this paper, we have extended our
tool to introduce some useful pre-processing steps, including the elision of and-
subtrees, which greatly reduces the number of assumptions.4 We then ran our
reasoner on the PCI-DSS case study model. We also evaluated the case study us-
ing the tool from [6], as described in Section 3.3. Applying the tool to industrial
problems is predicated on a useful set of requirements propositions being gen-
erated during requirements elicitation activities, whether geared to lightweight
user-story gathering or more formal use case or IEEE 930 approaches.

The examples above were derived from a complete RE-KOMBINE model of the
case study. It consisted of two connected components. One was the representation
of the PCI-DSS model, which has 254 requirements and 65 relationships. This
is the most basic model, in which every requirements must be adhered to (thus,
all relationships are AND-style). This is trivially easy to reason on. We then
added subcomponents representing scenarios for variation (i.e., nodes with mul-
tiple justifications in the PCI model, representing alternatives for compliance),
consisting of 41 nodes and 18 relations, and scenarios for evolution (changes be-
tween version 1.1 and version 2). Finally, we created components that reflected
the business objectives of a soccer stadium, based on the case study described
in [20]. The final model was 342 nodes and 127 relations in size.

To compile the model in ATMS took 614 seconds, on a Macbook Pro 2.4Ghz
with 8Gb RAM. This reflects the amount of time needed to generate the ab-
ductively minimal solutions for all possible goals in the model. Querying a set
of these goals then requires a polynomial amount of comparisons to generate
the answer which is trivial relative to the exponential abduction problem. This
size of model compares in size with industrial examples of design requirements
described in the literature (e.g., van Lamsweerde [21] listed KAOS model sizes
that were, on average, 540 goals and requirements). We have found that the

4 The complete model and source code is available at http://github.com/neilernst
Techne-TMS.



benefits of the ATMS are more apparent when performing incremental compu-
tations, e.g., when the model is evolved. ATMS is inherently incremental and so
evolutionary changes are relatively painless.

A single call to the MinWeight SAT solver from [6], using weak conflict
avoiding, did not find a single minimal solution after 30 minutes. Admittedly,
the MinWeight tool is not state of the art for SAT solvers. A call to a non-
minSAT solver, zChaff 2007.3.12, by comparison, returned a solution (a single
satisfying instance that is not minimal) in a few milliseconds.

5 Related Work

We described the work of Giorgini et al. [18] and Sebastiani et al. [6] in Sec-
tion 3.3. Their qualitative approach can simulate some of the capability of RE-

KOMBINE. A major difference in philosophy is the omission, in RE-KOMBINE, of
qualitative, partial satisfaction/denial relations. RE-KOMBINE deliberately omits
this notion of partial satifaction, because in practice, this bipartite approach
leads to frequent occurrences of conflicting information about a given require-
ment. In a dynamic environment, partial satisfaction of goals results in lack of
actionable information. For example, consider the case where we know that the
goal Comply with PCI-DSS is both partially satisfied and partially denied. This
type of conflict can lead to analysis paralysis and a substantial cost of delay. RE-
KOMBINE is tailored for automatic, binary answers over conflicting goals. Quali-
tative reasoning is better suited to up-front problem exploration. RE-KOMBINE’s
systematic, lightweight approach is more suitable when we are doing an iterative
problem exploration by committing to small increments of the model.

Zowghi and Offen [22] and Ghose [23] both use a default logic approach to
requirements modeling. Zowghi and Offen approach things from a verification
perspective. Their central concern is to ensure that the requirements specifi-
cation is complete and consistent following change. To evolve a specification,
Zowghi and Offen define a partial order over the requirements in order to select
the requirements that should be removed to maintain consistency. Like us, Ghose
is concerned with avoiding premature commitment. However, Ghose insists on
obtaining from an oracle the possible critical states of system behaviour, which
he calls a trajectory. With this predictive oracle, the solutions to the require-
ments problem captured in his language can then be optimized. The oracle is
capturing significant contextual variation in the assumptions. We do not insist
on anticipating future change in this fashion.

Hunter and Nuseibeh [24] described one of the early approaches to incon-
sistent requirements specifications. They focused primarily on up-front require-
ments specification, in particular the possibility that different stakeholders may
model the problem differently. They used labeled Quasi-Classical logic to per-
mit the resolution of inconsistency during specification development. This work
prefigures ours in using a paraconsistent language for continuing to reason in
the presence of inconsistency, although different inferences are drawn. Our in-
novation is the introduction of operations on requirements problems, including



the notion of minimal solutions, as a way to support design decision-making. We
also feel that the simpler propositional language of Techne is more suited to the
light-weight analysis common in industry.

The concepts of specification, requirements and domain assumptions also ex-
ist in formal methods research. For example, Poppleton and Groves [25] discuss
the notions of refinement and retrenchment, which are used to model the trans-
formation of a program as the specification changes. The distinction is primarily
in the degree of formality that the tools demand. We feel that only formalizing
high-level relationships between elements in the requirements problem is more
likely to support the wide range of scenarios one might see in an agile setting.

6 Conclusion

This paper has operated from a premise that establishing the entirety of a
project’s requirements up-front is unrealistic and even undesirable. It proposed
a systematic approach to agile requirements evolution where it is easy to change
requirements and automatically evaluate the consequences of these changes. We
showed that this reconciliation also makes it possible to delay decisions about
conflicting requirements until more information becomes available. In order to
support these trends, we described a framework, RE-KOMBINE, for expressing re-
quirements formally yet sufficiently flexibly as to enable deferred commitment.
The paper introduced a new definition of paraconsistency in requirements specifi-
cations using Techne as the underlying propositional language. It then described
properties for defining a paraconsistent consequence operator, |∼ . Using that
operator, we introduced two operations for reasoning paraconsistently on re-
quirements models, searching for minimal solutions to the requirements problem
despite the existence of contradictory or missing information. We introduced an
industrial case study of payment card requirements, and showed that the oper-
ations can be scaled to typical industrial design problems. In future, we intend
to continue investigating how the approach can be used in even more complex,
real-world problems.
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