2009 17th IEEE International Requirements Engineering Conference

Analysis of Multi-Party Agreement in Requirements Validation

Ivan J. Jureta
FRS-FNRS & PRECISE
University of Namur
jjureta@fundp.ac.be

Abstract

A requirements engineering artifact is valid relative to the
stakeholders of the system-to-be if they agree on the content
of that artifact. Checking relative validity involves a discus-
sion between the stakeholders and the requirements engineer.
This paper proposes (i) a language for the representation
of information exchanged in a discussion about the rela-
tive validity of an artifact; (ii) the acceptability condition,
which, when it verifies in a discussion captured in the pro-
posed language, signals that the relative validity holds for
the discussed artifact and for the participants in the discus-
sion; and (iii) reasoning procedures to automatically check
the acceptability condition in a discussions captured by the
proposed language.

1 Introduction

A basic question for requirements engineering (RE) is
how to find out what the stakeholders of a system-to-be
“really need” [6]. In response, RE starts with the elicitation of
requirements, the purpose of which is the initial investigation
of the goals, functions, and constraints of the system-to-be,
as they are stated by the stakeholders. Despite the difficulty
of making a clear distinction between the various specific
tasks that RE can involve [6], elicitation is acknowledged to
be one of the three fundamental tasks in RE, in addition to
validation and modeling/specification [9, 13].

Modeling/specification depends heavily on elicitation, for
it is elicitation that provides the application domain- and
project-specific information that is, potentially in a changed
form, represented in RE artifacts (i.e., models and specifi-
cations). RE artifacts capture the elicited information in a
format that lends itself to specific analysis, which the stake-
holders themselves have difficulty to perform, such as, e.g.,
the verification of the internal consistency of requirements.
For elicitation as well as modeling/specification to be effec-
tive, elicited requirements must be validated. As Goguen and
Linde observe, “[t]here are very good reasons why [stake-

1090-705X/09 $25.00 © 2009 IEEE
DOI 10.1109/RE.2009.8

John Mylopoulos
Dept. of Computer Science
University of Toronto
jm@cs.toronto.edu

57

Stéphane Faulkner
PRECISE
University of Namur
sfaulkne @fundp.ac.be

holders] often do not, or cannot, know exactly what they
need; they may want to see models, explore alternatives, and
envision new possibilities” [6]. A key purpose of require-
ments validation is to seek feedback from the stakeholders
on RE artifacts so as to inform further iterations of elicitation
and/or modeling/specification. To check the validity of an RE
artifact is to determine if what it says about the system-to-be
is in line with what the stakeholders “really need”.
Problem. The aim of validation is ambitious: through re-
peated and intertwined performance of validation together
with elicitation and modeling, we would indeed hope to ar-
rive at RE artifacts that capture exactly what the stakeholders
really need. Such absolute validity should be distinguished
from what we call relative validity. While the former cer-
tainly stands as an ideal to aim for, the latter is achievable in
practice and is the concern of this paper.

Relative validity is concerned with whether the stakehold-
ers agree on the content of an RE artifact. Validity is in this
sense relative to the stakeholders. An RE artifact is there-
fore valid in this sense if the stakeholders agree that what
it says about the system-to-be is acceptable to them. Stated
otherwise, this form of validity will verify if all the concerns,
which the stakeholders raised, are answered.

It is safe to say that we cannot know if the stakeholders
agree on an artifact if we do not give them the possibility
to raise their concerns. The engineer can inform them in
this task by providing graphical animations of a behavior
model [12], the results of checking of predefined properties
on models made from parsed text [5], explicit accounts of
(the inconsistencies between) different viewpoints on the
system-to-be [9]. In each of these cases, the engineer will be
producing information to present in a potentially summarized
form to the stakeholders, and then discuss it. Checking
relative validity inevitably leads to a discussion between the
stakeholders and the requirements engineer.
Contributions. This paper focuses on the modeling and
analysis of a discussion between the stakeholders and re-
quirements engineers about the relative validity of an RE
artifact. By building on contributions in design rationale
research, argumentation research in artificial intelligence,

IEEE
computer
® psouety

and graph traversal algorithms, our aims are to: (i) provide a
simple but expressive propositional model of the explicit ex-
change of information in what is usually called a discussion;
(ii) based on the model of a discussion, propose a condition,
called the acceptability condition on an artifact (denoted
AC), such that if it holds, then it signals that the relative
validity verifies for that artifact and for the participants in
that discussion; and (iii) if a concrete discussion is recorded
(as is the case when discussions are realized in forum-like
applications), then check automatically if AC holds at some
point in the discussion. To meet these aims, we propose
the Acceptability Evaluation framework, henceforth ACE.
ACE can be seen as a simple propositional reasoning frame-
work, that is independent of the RE method that produces the
artifact, and of the application domain.

Organization. We introduce first the acceptability condi-
tion (§2), then illustrate the framework for the automated
checking of the acceptability condition (§3), note some im-
plementation considerations (§4), and discuss related work
(85). We end with a summary of conclusions and point to
future work (§6).

2 Baseline

What is typically called a discussion is, roughly speak-
ing, a complex exchange of information between potentially
many participants. Various properties of a discussion can be
studied, such as its topic, purpose, (dis)organization, and so
on. We focus on discussions about RE artifacts, the purpose
of which is to reach a conclusion about the relative validity
of the artifacts. We are interested in the specific traits of the
structure of such discussions. These are the inference, attack,
and preference relationships between pieces of information
offered in a discussion. Inferences connect premises to con-
clusions, attacks connect somehow opposing information,
and preferences compare in terms of desirability the condi-
tions described via the various pieces of information offered
in the discussion.

The range of discussions we focus on is not confined to
specifc RE methods and artifacts. Leite and Freeman [9]
observed that “the whole process of [RE] is a web of sub-
processes, and it is very difficult to make a clear distinction
between them”. A subprocess in that web amounts to the
application of some RE method to specific inputs, in order to
produce an output, itself fed into the application of another
method, and so on. To remain general, we can say that the ap-
plication of any RE method, i.e., any subprocess in the com-
plex RE web, fits the abstract input-transformation-output
pattern. Namely, in a given application domain D, informa-
tion elicited or produced by another RE method acts as the
input I to a domain-independent RE method, symbolized
by the function 7'. The latter produces the domain-specific
output Op, i.e., Op = T(Ip). E.g., the refinement of a

58

requirement asks for an abstract requirement and domain-
specific knowledge as its inputs I, and results in a set of
less abstract requirements as its output O p, while the trans-
formation T’ establishes the relations, such as consistency,
that must verify between inputs and outputs. Observe that I
and Op, or any part thereof is clearly an RE artifact. More-
over, we can view the application of a method to specific
inputs, i.e., T'(Ip) as an artifact itself: there really seems to
be no strong argument not to allow the participants to discuss
the engineer’s choice of applying 7" to Ip.

Discussion performed to the aim of checking the rel-
ative validity of the application of an RE method, i.e.,
Op = T(Ip), or equivalently, the relative validity of in-
dividual artifacts Op, T'(Ip), and Ip, consists of offering
information in favor or against these, and providing opinions
about the relative desirability of the offered information. If
I agree with you, I can provide additional information to
support your position; if we disagree, I can offer informa-
tion against your positions; if I have no further information
to offer in favor of or against that which has been offered,
I can say which of the already present conclusions I pre-
fer to others. Op = T'(Ip) will be acceptable if and only
if no information offered against any of the components
of Op = T(Ip) holds by the end of the discussion. Ac-
ceptability signals agreement. It is reasonable to interpret
agreement as relative validity. It is by analysing a discussion
that we can determine if there is agreement about the arti-
facts being validated, and thereby if they are valid relative
to the participants in the discussion. If the parties agree that
the given inputs Ip transformed by the application of the
method T give Op, then they agree that Op = T'(Ip) holds,
so that the given method application is acceptable, denoted
AC(Ip,T(Ip),0Op).

Definition 1. AC. The application of the RE method T to the

input Ip to produce the output Op is acceptable, denoted
AC(Ip,T(Ip),Op) if and only if:

AC(Ip) and AC(T(Ip)) and AC(Op) (1)

In order to apply to any method, ACE sees any RE artifact, or
part thereof, as a proposition. In conceptualizing a proposi-
tion, we follow McGrath’s [11] stipulation that propositions
“are the sharable objects of the attitudes [(i.e., what is be-
lieved, desired, etc.)] and the primary bearers of truth and
falsity”. Regardless then of the syntax and semantics of the
RE method deployed to produce an artifact, the artifact itself
is a conjunction of propositions. Symbols p, ¢, and r, in-
dexed when needed, denote individual propositions. In(Ip),
In(Op), and In(T'(Ip)) denote the sets of propositions, re-
spectively in Ip, Op, and T'(Ip). We assume that all propo-
sitions in Ip, T', and Op are visible to all participant in a
discussion about the relative validity of these artifacts. A
participant having information in favor or against any propo-
sition in In(Ip), In(Op), and In(T'(Ip)) will voice that

information. We evaluate the acceptability of the individual
propositions in In(Ip), In(Op), and In(T'(Ip)) in order to
verify AC(Ip,T(Ip),Op):

AC(Ip,T(Ip),Op)

iff Vp € In(Ip) UIn(Op) UIn(T(Ip)), AC(p) (2)

The acceptability of a given proposition p is automatically
verified in ACE via an algorithm that analyzes the information
given in favor or against p, and captured via a language
defined in the following section.

3 Evaluating Acceptability

ACE has two components: (i) a language to record the
information relevant to the evaluation of acceptability (§3.1),
and (ii) algorithms for retrieving the recorded information
and evaluating its acceptability (§3.2).

3.1 Language

All information relevant for the evaluation of accept-
ability is encoded into a directed labeled graph G, with
the set of vertices V(G) and lines L(G), and the labeling
functions Ay and A\, for vertices and lines, respectively.
Any one proposition p or a conjunction of propositions in
any of In(Ip), In(Op), and In(T(Ip)) is captured by ex-
actly one vertex v € V(G). As all lines carry the same
label Vi € L(G), Ar(l) = To, there is no need to write
this label in graphs. There are four labels for vertices:
Yo € V(G),A\v(v) € {i,I,C,P}. G together with the
labeling functions and the propositions forms the syntax of
the language. The intended interpretation of the syntax is
illustrated via the following example.

Suppose that the aim is to build a system that would
deliver music on-demand: a user visits a website, chooses
songs from a database, and can play them in the audio player
on the website. An important goal is “Generate revenue
from the audio player” (g1), refined by the conjunction of (i)
“Display text ads in the audio player” (g2), (ii) “Target text
ads according to users’ profiles” (gs), and (iii) “Maintain the
player free to all users” (g4). We therefore have Ip = g1 and
Op = g2 N g3 A g4. The applied RE method is the standard
AND-refinement of a goal [4]. We capture the application
of AND-refinement in the example via the graph shown in
Ex.1. The refined goal g; and the components g, g3, g4 of
its refinement are assigned the label i because of their role
as the inputs and outputs to the application of an inference

rule, denoted I (i(g1),{1(92),1(g3),1i(ga)})-

59

(Ex.1)

i(g1)

v

I7(1(91),{i(g2),1(93),1(ga)})

i(g2) i(g3) i(ga)

The label 1 is assigned to an information vertex, which
serves as the input and/or output to the application of an
inference rule, corresponding to the label I. An inference
rule vertex in G represents the application of some particular
rule of deductive or ampliative inference to inputs in order
to obtain the given outputs. An example of deductive infer-
ence is modus ponens. Inference or reasoning is ampliative
when a conclusion is inferred, which includes information
absent from the premises, from which the conclusion is
inferred. Examples of rules of ampliative inference are in-
duction by enumeration, reasoning with analogies, causal
reasoning. Refinement, as any method is an inference rule,
so that the application of AND-refinement is represented by
I7(i(g1),{1i(g2),1(g3),i(g4)}) in the graph. Any trans-
formation T translates into at least one I vertex; it will
equate to more vertices when we are not content with eval-
uating the acceptability of the application of the method as
a whole (i.e., the black box approach), but are interested
in evaluating in detail the acceptability of the various steps
or other considerations called for in the application of the
method. The meaning of each line is derived from the ver-
tices it connects, and its direction. The line from 1(g;) to
I7(i(g1),{1i(g2),1(g3),1i(g4)}) is understood as stating
that the former is the input to the application of the given
inference rule, I 7.

An information vertex (i) can be involved in the appli-
cation of a conflict (C) or of a preference rule (P). Suppose
that a stakeholder indicates that “Revenue can be generated
by charging subscriptions to users” (p;). A vertex labeled
C indicates an application of a conflict rule, that is, the ap-
plication of criteria giving rise to a conflict between two or
more other vertices in the graph. Since it is clear that not
all features of the player are free when a paid subscription
is available, we add the conflict vertex C1(i(p1),1(g4)) to
the graph. Additional information can be immediately found
to elaborate on the subscription revenue model: (i) “Part
of the music database can be restricted, so that the player
only plays 30 seconds of some songs, until the user buys a
subscription to listen full songs” (p2); (ii) “According to com-
petitors’ services, some users are willing to pay to choose a
different graphical layout for the online audio player; users
can be allowed to choose among different graphical layouts
and pay for each” (ps); and (iii) “Two versions of the player
can be offered, one with basic and free features, and another
with advanced features requiring subscription” (p4). We
choose to relate each of ps, p3, ps via the modus ponens

inference rule to p;. Say that a survey concludes that users
strictly prefer a free music on-demand service to one based
on subscription. We capture this strict preference by the
preference vertex P1(i(g4), 1(p1)) and lines from i(g4) to
P1(i(g4),1(p1)), and from P (i(g4), 1(p1))to i(p1) inac-
cordance to the direction of preference. A preference vertex
represents the application of a preference rule, that is, the ap-
plication of criteria defining a strict preference order between
the conditions described in two or more other vertices. If the
stakeholders agree that P1(1(g4), 1(p1)) resolves the con-
flict C1(1(p1), 1(g4)), then an application of a conflict rule
will be added, Cg(Pl, {C17 l(pl)}), from Pq (1(94), l(pl))
to C1(i(p1),1(g4)) and i(p3). Figure 1 summarizes this
discussion; applications of inference, conflict, and prefer-
ence rules are given in the abbreviated form therein (i.e., P
is written in place of P1(1(g4), i(p1))), and each application
of the modus ponens inference rule is indexed differently as
it takes different inputs, i.e.:

o Iypi({i(p2) — i(p1), i(p2)}, 1(p1))s
o Iyp2({i(ps) — i(p1),i(p3)}, 1(p1)), and

o Typ3({i(pa) — i(p1),i(pa)}, 1(p1)).

There are three constraints (1)—(3) imposed by the syntac-
tic constraints on the To relationhship. (1) Any two vertices
in G can be connected by at most one line. (2) No two in-
formation vertices can be connected; any information vertex
must be connected to an inference, conflict, or preference ver-
tex, for it is these vertices that establish the use to which the
information vertices are put in G. (3) Any inference, conflict,
or preference vertex must have at least one line that enters it,
and another that exits it. There are no restrictions on the la-
bel of vertices to which an inference, conflict, or preference
vertex can be connected. This makes the language rather
versatile, as some forms of meta-reasoning can be captured.
A preference may be given between other preferences (e.g.,
P; — P3(Py,P2) — Py) to capture the priority among
preferences. Inference rules can be compared in terms of
preference (e.g., Iy — P(I1,I2) — Is). Conflicts be-
tween preferences can be described, along with conflicts
between conflicts, and conflicts between applications of in-
ference rules.

3.2 Algorithms

The graph in Figure 1 is a summary of the information
offered in favor of and against the application of the AND-
refinement method in Ex.1. Given such a graph, two tasks
are relevant. The first, retrieval task is to search for particular
subgraphs G in order to retrieve information that may be of
relevance for further discussion among the participants and
the evaluation of acceptability. The second, evaluation task

60

i(g1)

|

It
i(g2) i(g3) i(g4)
1
P1 Co C1
\ i
i(p1)
]
Imp Imp,2 Imp,3
! f f
i(p2) i(ps3) i(pa)

i(p2) — i(p1) i(p3) — 1(p1) i(pa) — i(p1)

Figure 1. Discussing a refinement.

is to determine if some specific application of an RE method
is acceptable.

Both the retrieval and evaluation tasks rely on the follow-

ing two important notions. A vertex v € V(G) is attacked
iff there is a line | € L(G) from a conflict vertex to v, i.e.,
Jl =v'v € L(G) s.t. Ay (v') = C. Avertex v € V(G) is
dominated iff there is a line from a preference vertex to v,
ie., 3l =v'v € L(G) s.t. Ay (v') =P.
Retrieval. Suppose that we are interested in all vertices in
G from Figure 1 that is directly in favor of a vertex i(gs).
The result sought is the subgraph i(g1) — I — i(g4),
because i(g4) is inferred from 1i(g;) by the application
of Ip. i(g4) is attacked via Cy, so that C; cannot be in
favor of 1(g4). If we seek all vertices directly against i(gy4),
the result is the subgraph i(p1) — C; — i(gq). It
is, however, considerably more interesting to search for all
(i.e., direct and indirect) vertices in favor of or against a
given vertex, say i(g4). This equates to searching for the
subgraph of GG, which contains exactly all simple paths that
end in i(g4). Such a subgraph is important, as it contains
all vertices in GG that are of interest when evaluating the
acceptability of 1(g4) alone. The breadth first search-like
Algorithm 1 retrieves all vertices in favor of or against a
given vertex in G, i.e., it retrieves a discussion of the given
vertex.

Proposition 1. Algorithm 1 applied to a vertex v in an ACE
graph (i) does not loop indefinetly, (ii) returns all direct and
indirect vertices in favor of or against the starting vertex v,
and (iii) has the running time of O(|V (D[v])| + |L(D[v]))).

Proof. We first prove that the algorithm (i) does not loop indefinetly.
V(G) and L(QG) are finite; the while loop explores only incoming

Algorithm 1 Find Discussion

Require: ACE graph G, a starting vertex First € V(G)
Ensure: Graph D|First], which is a subgraph of G

1: procedure FINDDISCUSSION(G, First)

2 Empty the queue Q; V (DI[First]) «— 0; L(D[First]) < 0
3 Add Firstto Q

4 while @ is not empty do

5: for each vertex v in Q do

6 Add v to V(D[First])

7 for each v’ € V(G) s.t. I'v € L(G) do
8 if v'v ¢ L(D][First]) then

o: Add v'v to L(DI|First])
10: end if
11: if v’ ¢ V(D|[First]) then
12: Add v’ to V(D|First])
13: Addv' to Q
14: end if
15: end for
16: Delete v from @Q
17: end for
18: end while

19: end procedure

lines to a given vertex, and never adds the same line or vertex twice
to D[v]. It follows that the algorithm will never loop indefinetly.

We prove by contradiction that the algorithm (ii) returns all
direct and indirect vertices in favor of or against the starting vertex
v. Suppose that there is a vertex v’ that is either in favor or against
the starting vertex v, and that is not visited by the algorithm. The
inner for each loop (Lines 7-15) moves from the starting vertex
along its incoming lines to its nonvisited adjacent vertices, adds
these to the queue @, and removes the starting vertex. The while
loop guarantees that any vertex added to () is visited, along with
its outgoing lines. The while loop thereby ensures that any vertex
in G having a path to the starting vertex is visited. If v’ was not
visited by the algorithm, then v’ is not on a path that ends in v. It is
therefore a contradiction that v’ is in favor or against v, but that it
has not been found by the algorithm.

Finally, we prove that the algorithm (iii) has the running time
of O(|V (D[v])| + |L(D[v])|). The if-then blocks in the inner for
each loop (Lines 7-15) guarantee that no vertex or line in G will
enter (Q more than once, and that all lines and vertices visited for the
first time will be added to D[v]. It follows that the worst case arises
when D[v] = G, so that the algorithm will traverse all lines and
vertices of G, which gives the O(|V (G)| + | L(G)|) as the upper
bound on the time complexity, and O(|V (D[v])| + | L(D]v])|) as
the time complexity for the algorithm. O

Evaluation. The acceptability of the vertex v is evaluated
by traversing and computing the labels on vertices in the
discussion of v, D[v]. The computed label is a secondary
label, and is different from that assigned by Ay . The com-
puted label of any vertex in D[v] is either A for accepted,
AD for accepted and dominated, or R for rejected. We il-
lustrate the computation of labels by simple examples first,

61

then go on to label the discussion D[1(g4)] obtained from
the graph in Figure 1, and finally give an informal outline of
the algorithm that computes the labels of any discussion.
Consider an ACE graph G’ with only a single vertex
V(G') = {v} and L(G’) = 0, so that D[v] = G'. Be-
ing alone in D[v], v is neither attacked nor dominated; we
therefore say that v is acceptable, and label it A, denoted
av. Consider now G with three vertices and two lines be-
tween them. To compute labels in G”, we need to know the
direction of the lines and the primary labels on the vertices:

o if G"isi; — I(i1,12) — io, then all vertices are
neither attacked nor dominated, and they all take the
label A, i.G., Al — AI(il, ig) — Alo;

o if G isi; —> C(i1,12) — io, then i is attacked;
we see that 11 and C are not attacked, and conclude that
igisrejected: o1 — AC(i1,1i2) — Riz;

o if @ is iy — P(i1,i2) — 1io, then iy is dom-
inated. To be dominated alone is not enough for re-
jection, so that i» is accepted and dominated, that is
Al1 — aP(ij,i2) — apio.

These three cases illustrate the first important principle used
in computing the labels of a discussion: the label on a vertex
v depends on the labels of all vertices vy, ..., v, adjacent
to v by lines v1v, vov, ..., v,v. This alone is not enough,
as we must know how the labels interact — consider the
hypothetical discussion D[i4] in Ex.2.

(Ex.2)

Al aiz — pI({i2,i3},i1) = Ri1

v 7

AC(i4,i3) —Ris

The inference I({i2, i3}, 11) uses two inputs, one accepted
iy and another is, which is attacked by the acccepted iy
(hence the rejection of i3). The inference itself cannot be
accepted, since one of its inputs is rejected. Given that the
application of the inference rule is rejected, the conclusion of
the inference, 11, must be rejected as well. Ex.13 illustrates
the choice that the label R has priority over A. We choose
to be cautious in computing the labels, meaning that R has
priority over AD and A, and AD has priority over A. In ad-
dition to this second principle employed in the computation
of the labels, we have a third and final one, illustrated via
Ex.14.

(Ex.3)

Ala AiQHAI(iQ,il)ﬁAil

v —

AC1(i4,C2) — RC2(i3,I) =<—— ais3

Suppose that no computed labels are given in Ex.14. We
see immediately that 14, i3 and i- should be accepted as
they are not attacked, along with C (i4, C2). Co(i3, I) must
then be rejected, as it is attacked via Cq(i4,C3). Observe
then that I(is,11) has two incoming lines, one from the
accepted 1o and another from the rejected conflict Co(ig, I).
While it is true that R has priority over A, we conclude that
I(ig,1i1) is accepted, because the rejected conflict is not
an input to the inference I(iq, i1). We have noted earlier
that the meaning of a line in an ACE graph is determined
from the labels that Ay assigns to the vertices connected by
the line. The conclusion that I(is,i7) is accepted cannot
be reached without determining the meaning of each line
ending in I(ig, i1). By reading these lines, we see that
I(ig,11) does not take the conflict C3(ig, I) as its input,
but that this conflict attacks I(ig,11). If the conflict is ac-
cepted, I(ig,i1) should be rejected; however, the conflict
is rejected, so that I(is,11) is accepted. More generally,
the third principle we use in computing the label on a vertex
v is that the meaning of each line that ends in v must be
determined. This leads us to define a number of deduction
rules for labels, which account for the meaning of the rele-
vant line. To see how these rules are used, consider again
the vertex I(ig,i1). Since it has lines incoming from two
different vertices, we use the following two label deduction
rules:!

e from o1 — I(i,-), conclude that the inference
I(1i,-) should be acccepted (where poi — I(4i,-)
means that the inference I(1,-) uses the accepted i as
its input and concludes something else, i.e., ““-”); and

e fromgC(-,I) — I(:,-), conclude that the inference
I(-,-) should be accepted (where gC(-, I) — I(:,-)
means that the inference I(-,-) is attacked by the re-
jected conflict C(+, I)).

The application of two rules, as above, gives us two labels,
both A; it is thus clear that I(io, i) will bear the label A.
More generally, if v has n incoming lines vy v, vav, . .., v,0,
then we will apply n rules, selected depending on the label
of each v; € {vy,va,...,v,}. This will result in n labels.
The one label that we will assign to v will be that of the n
labels, which has the priority over others, according to the
principle of how the labels interact, and given above. E.g.,
if we have the set of n labels, in which there is at least one
label R, we will conclude gv; if each label is A, then pv; if
there are no R labels, but only A and AD labels, then appv.
Seventy two label deduction rules cover all cases allowed by
the meaning of the To line in any ACE graph. They are all
listed in the full version of this paper [8].

! As a notational convention, we write “-” for any, i.e., the parameter
that is not important for the application of the given rule.

62

1(94)

[ie2) = i) [ipe) = ile) | [ia) = i) |

Figure 2. Strongly connected components in
the discussion from the example.

We now ask if i(g4) is acceptable. The answer can
be given once we compute the labels on the discussion
DJi(g4)]. We find the discussion D[i(g4)] via Algorithm 1
and then proceed as follows:

1. If there are preferences in the discussion that are tran-
sitive, the steps below are performed on the transitive
closure of these transitive preferences on the discus-
sion of choice. Regardless of whether P is transitive,
the transitive closure of P1 on D[i(g4)] is the same as

D[i(ga)]-

2. We now need to find the topological sort of the strongly
connected components of the discussion D[i(g4)]. A
discussion can contain cycles, which is why we must
first identify the strongly connected components.? Fig-
ure 2 shows the discussion D[i(g4)], where each
strongly connected component is delimited by a rectan-
gle. The largest strongly connected component contains
cycles, while the others contain no cycles. Once we
have the topological components, we need their topo-
logical sort. It is well known that contracting each
strongly connected component in a directed graph gives
a directed acyclic graph, where each vertex is a con-
tracted strongly connected component. The topological
sort of that directed acyclic graph is a linear ordering
of its vertices, in which a vertex comes before all ver-
tices, to which it has outcoming lines. To see why
we need the topological sort of the strongly connected

2 As usual, a strongly connected component is a graph, in which there is
a path from any vertex to any other vertex.

components, consider the problem of labeling Iyp
(same applies to the problem of labeling Iyp 2 and
Imp,3): the label of Ip; depends on the labels of
i(p2) and i(p2) — i(p1). Consequently, we must la-
bel i(p2) and 1(p2) — 1(p1) before welabel Iyp 1. In
the topological sort, Ip1 comes after both i(ps) and
i(p2) — i(p1). The topological sort therefore gives
the order, in which the strongly connected components
should be labeled.

3. Given the topological sort of the strongly connected
components of the discussion D[i(g4)], we label all
elements in the sort that have no incoming lines. We
consequently label as accepted the following vertices:
Ai(g1), Ai(p2), al(p3), Ai(pa), a(i(p2) — i(p1)),
a(i(ps) — i(p1)). and a(i(ps) — i(p1)). Once
these are labeled, the next elements in the sort are
the three applications of modus ponens and I7. They
are not attacked and their inputs are accepted, so that
Alup1, Alup2, Alups, and aIr. Labeling i(p;) is
more difficult and requires a different strategy. This is
because i(p;) lies on at least one simple cycle.> To
label a strongly connected component with cycles, we
proceed as follows:

(a) The count, say C of simple cycles in the strongly
connected component is computed. C' = 3 in the
strongly connected component containing i(p1).

(b) We add an empty sequence of labels on each ver-
tex in the strongly connected component, and add

the label A to the sequence of each vertex.

(c) We choose a vertex according to a specific heuris-
tic (namely, we take the last added vertex in the
strongly conncted component; the choice of this
heuristic is discussed in the full paper) and call
it the First vertex. In D[1(g4)], P1 is that vertex.
In doing so, we in fact merely hypothesize that
P; is accepted. To understand intuitively what
happens next, suppose that there are C' walkers
stationed at P;. Each walker obeys the following:
(i) it takes equal time to traverse a vertex; (ii) it
can only go forward (i.e., over lines that start in
a vertex); and (iii) no two walkers will start from
First and return to First along the exact same path.
In the strongly connected component with i(p;),
we place three walkers at the vertex Py and send
them along the lines outgoing from P;. After the
first step, two walkers will reach C5 and one will
reach i(p;). Once they reach a vertex, they com-
pute the label on that vertex by using the label

3 As usual, a simple cycle is a cycle that passes once through all vertices
except its starting vertex, which the cycle passes twice (as the cycle starts
and ends in that vertex).

63

deduction rules we explained earlier. The com-
puted label is appended to the sequence of labels
on the vertex. For (ayCa, we append the sequence
of labels with A, and obtain (A,A)C2. Since all
three applications of modus ponens are accepted
and (a)P1, we get (a ap)i(p1). After the second
step, two walkers are at C;, and the third is at
i(p1), so that (A A R,R)C1 and (a ap,Ry1(p1). The
fourth step results in (a a)i(ga). After the fourth
step, two walkers arrive simultaneously at the first
vertex P;. However, the first vertex obtains its
second label (i.e., (a)P1 becomes (a a)P1) only
after the slowest walker (one on the longest path
back to the first vertex) arrives at that vertex.*

The stopping criterion for the walkers is as follows. If
the last two labels in the sequence of labels on the first
vertex are identical, the walkers are not sent to traverse
the strongly connected component any further. This is
the case in the example, where (a oyP1. The last label
in the sequence of labels on any vertex is the label that
indicates the acceptability of that vertex: if A, the ver-
tex is acceptable, if AD, the vertex is acceptable and
dominated, if R, the vertex is not acceptable. In case
the first two labels in the sequence of the first vertex
are not identical, the walkers will be sent out in the
same way as described above, until the first vertex has
four labels. When the first vertex has four labels and its
last two labels are not identical, then the given discus-
sion is inconclusive with regards to acceptability: more
vertices need to be added (i.e., the discussion should
continue) before the discussion is evaluated again.

The sequence of steps exemplified above is the informal
outline of the algorithm that labels any discussion. The al-
gorithm, called EVALUATEDISCUSSION takes an unlabeled
discussion and returns a labeled discussion. The result of
the application of the algorithm on the discussion in Figure
2 is shown in Figure 3. The algorithm is formally presented
in the full paper [8], and the proofs of its correctness, termi-
nation, and time complexity are given. For a given discus-
sion D[v], EVALUATEDISCUSSION has the running time in
O(C(De[o]) (IL(D*[v])] + 2|V (D°[o])])). where C(D*[u])
is the number of simple cycles in D¢[v] and D¢[v] is the
transitive closure of the transitive preference rules in D[v]
on the discussion D]v].

We wrote in Equation 2 (§2) that AC(Op = T(Ip))
holds if and only if Vp € In(Ip) U In(Op) U
In(T(Ip)), AC(p). We can now complete this condition
with the following:

4Observe that the number of labels in the sequence of labels of a vertex,
in a strongly connected component with cycles, equals 1 plus the number
of times a walker traversed that vertex. This is valid for all vertices other
than the First vertex.

(ayi(gr)

|

(myIr

T

i(gs) (AAAA)1(94)

!

AaP1 =——————> (AAC2 ——————> (AARR)CIL

!

i(g2)

/ (A,AD,R)1(P1)
Impa Imp2 Imp3
(ayi(p2) (ayi(ps) (ayi(pa)

ay (1(p2) — i(p1)) ay (i(ps) — 1(p1)) ay (1(pa) — i(p))

Figure 3. Example of a labeled discussion.

Vp € In(Ip) UIn(Op) UIn(T(Ip)), AC(p)
iff v(p) has A or AD as the last label
in its sequence of labels

in EVALUATEDISCUSSION(DJ[v(p)]) (3)
where v(p) is the vertex carrying the proposition p in
the ACE graph, from which the discussion D[v(p)] is
obtained. A practical property in ACE is that if v/ €
V(D[v]), then D[v'] is a subgraph of D[v], so that it is
unnecessary to compute EVALUATEDISCUSSION(D[v']) if
EVALUATEDISCUSSION(D[v]) is known: the latter gives us
the evaluation of the acceptability of v’.

We observe in Figure 3 that i(g4), i(g1) and I are
acceptable. As D[i(g2)]is ai(g1) —aA I — 1(g2), we
conclude that o1(g2). Similarly, D[i(g3)] is a1(g1) —a
I — i(g3), leading us to the conclusion that o1 (g3). We
therefore observe that the application of the AND-refinement
Ir on the goal g; to obtain g2, g3 and g4 is acceptable, and
that relative validity holds for this refinement, until new
information is offered against it and the acceptability needs
to be evaluated again.

4 Notes on Implementation

The implementation of ACE graphs and of the associated
retrieval and evaluation algorithms is in progress at the time
of writing and is based on the adaptation of standard open
source internet forum software. This choice is based on
two observations: (i) internet forums are popular means for
discussion, and are a well known kind of software, having

64

evolved from bulletin board systems of the early 1970s;
and (ii) a discussion in ACE amounts to a forum discussion
performed according to a set of simple rules. By default,
a discussion in an internet forum contains a collection of
untyped posts. Any post may be a response to the original
post (i.e., the root post), or a response to a later post. A
forum discussion thus typically resembles an unlabeled tree,
where each post is a vertex. To obtain an ACE discussion
instead of a standard forum discussion, the following rules
must be followed by the participants: (1) Any post is either
an information, inference, conflict, or preference post. (2)
Any post that is not the first post in a discussion, must be
related to another post according to the meaning of the To
relationship.

Compared to a classical forum, an ACE forum is thus one
where a user chooses the label for a new post, and relates
that post to others. The first rule above ensures that we have
the label for any post, while the second rule guarantees that
no post is disconnected from the others. A discussion in an
ACE forum can thus be interpreted as an ACE graph (or ACE
discussion), on which we can perform retrieval and evalu-
ation operations via the algorithms discussed earlier. The
evaluation algorithm provides to participants the indication
on the acceptability of each post, so that they can, in case of
rejection, intervene and respond in defense of their claims.

5 Discussion and Related Work

ACE is the continuation of our efforts to advance the
analysis of decision making in requirements engineering.
We previously discussed the problem of the acceptability
of goal models [7] via their justification. The present work
advances our prior results in several respects: (1) ACE al-
lows participants to express preferences over information,
and applications of inferences, conflicts, and other prefer-
ences in ACE graphs. Our prior analysis of acceptability via
justification could not account for preferences, the set of
inferences and conflict rules was closed (i.e., two inference
rules were available and one conflict rule), and no forms of
meta-reasoning could be captured (one could not express
that the application of an inference rule is in conflict with the
application of another inference rule, that a conflict may be
in conflict with the application of an inference rule, and so
on). (2) ACE offers algorithms for the retrieval of information
relevant for the evaluation of acceptability; no such features
were available for our justification graphs. (3) The evalua-
tion of acceptability in ACE is automated via the evaluation
algorithm outlined above; acceptability was evaluated manu-
ally in justification graphs. In conclusion, ACE is (i) more
expressive (due to the presence of preferences and the sup-
port for forms of meta-reasoning), (ii) more “practical” (due
to the presence of retrieval and evaluation algorithms), and
(iii) more general (as argued throughout the paper) than the

goal-oriented approaches, which we suggested previously.

The language in ACE, and more precisely, the choice of
the four labels — information, inference, conflict, and pref-
erence — was influenced by the initiative towards a core
ontology for argumentation in artificial intelligence, within
the Argument Interchange Format (AIF) [2]. AIF has recently
been suggested to facilitate the representation and exchange
of data between various tools and agent-based applications
that rely on arguments. The basis for AIF is the AIF Argu-
ment Network, which is “the core ontology for argument
entities and relations between argument entities” [2]. The
notion of argument is a construct in AIF, defined as a par-
ticular subgraph in an argument network. It is by placing
restrictions on, or by specializing the concepts in the argu-
ment network that classical argumentation frameworks can
be obtained. ACE thereby reuses the core ontology of AIF
for the labels in ACE graphs. To the best of our knowledge,
no framework based on AIF and comparable to ACE in terms
of the language and the retrieval and evaluation algorithms
has been suggested.

Validation is an old problem in RE, and has been raised in
particular in relation to the very early requirements elicited
from the parties involved in RE. Leite and Freeman argued in
an important paper [9] that requirements should be elicited
from different viewpoints, and “that examination of the dif-
ferences resulting from them can be used as a way of assist-
ing in the early validation of requirements”. They suggested
a language for capturing viewpoints, and heuristics for a
syntacticly oriented analysis of views to the aim of resolv-
ing their inconsistencies. This approach provides inputs
to the negotiation required to reconcile different opinions.
An attractive characteristic of their proposal is that it is a
means of validation applicable very early in the elicitation
of requirements. We are very close to their work in this
motivation, although our proposal differs in several impor-
tant respects. ACE has a considerably simpler language than
their framework. Since automated reasoning about accept-
ability happens in a propositional framework in ACE, we
can accommodate various forms of RE artifacts. As we treat
propositions as atoms, Leite and Freeman’s approach can go
into more detail, and study the structure of the propositional
content. While they can point precisely the disrepancies
between views, we can help by evaluating the outcomes
of a discussion of these discrepancies. Nothing similar to
the automated evaluation of acceptability is present in the
viewpoint resolution method. Discussions are not studied
in detail. ACE is complementary in this respect, as it can be
used to record and evaluate discussions of views and their
inconsistencies. Gervasi and Nuseibeh [5] check predefined
properties on models generated from parsed text to identify
nontrivial inconsistencies. While AC(Ip,T'(Ip),Op) indi-
cates agreement about these artifacts, it certainly does not
entail the internal consistency of the Ip, T'(Ip), and Op;

65

inconsistency can be present even if agreement is present:
inconsistency in that case remains undetected, making ACE
complementary to any approach tailored to detect nontrivial
internal inconsistencies. Validation of late requirements is
well illustrated in a recent paper from Uchitel et al. [12].
They establish the relation between scenarios and goals via
“fluents that describe how the events of the operational de-
scription change the state of the basic propositions from
which goals are expressed.” Graphical animations can be
synthesized from scenarios and goal model checking over
scenarios is enabled to guide animations through goal vio-
lation traces. Animations are subsequently presented to the
relevant parties for discussion. ACE can complement such
an approach, especially when user-centered sessions involve
the asynchronous participation of geographically distributed
users, so that discussion via forum-like tools becomes rele-
vant. Boehm’s WinWin groupware supports negotiation of
requirements via the general WinWin approach. It is usually
defined as [1] “a set of principles, practices, and tools, which
enable a set of interdependent stakeholders to work out a
mutually satisfactory (winwin) set of shared commitments.”
WinWin differs from ACE in that it focuses on the negotia-
tion context, which differs from discussions on which ACE
focuses. ACE is not tailored to negotiation.

Absence of validity can reflect errors in the rationale of
the decisions taken when a method is applied. The primary
aim of design rationale (DR) research is to capture the why
behind decisions in a design activity. The classical IBIS
method [3] starts with a participant who posts the root is-
sue of an IBIS tree. Others then post positions (i.e., ways
of resolving issues) and arguments (to support or object to
positions). Issues, positions, and arguments are related via
some of the allowed relationships: generalize, specialize,
object, support, replace, question. The process stops when
consensus has been reached regarding the resolution of is-
sues. Subsequent DR methods, as reviewed by Louridas and
Loucopoulos [10], share many characteristics with IBIS. The
principal novelty of ACE with regards to these other DR meth-
ods lies in the way it answers the relationship expressivity
question: What are the relationships between concepts in
the DR method, and how are they defined? At stake in this
question is how to build a DR approach in the face of the
multitude of potentially relevant relationships; Louridas and
Loucopoulos highlight this problem ([10]: p.222-223):

“A fixed set of links [i.e., relationships] limits both the
expressive and the functional capabilities of the [design
rationale] model. Regarding the expressive weaknesses
of any such attempt, the sheer number of the proposed re-
lationships in the various [design rationale] approaches
and the differences in their semantics from approach to
approach indicate that it is difficult to arrive at a widely
accepted set of predefined links. Each approach com-
mits to a certain set, but there is no reason to believe
that one of these sets is innately better than the others.”

This leads Louridas and Loucopoulos to leave out the defi-
nitions of the relationships in their Reasoning Loop Model,
which is their synthetic proposal for reflective design. In
doing so, they adopt the so-called free-link approach to the
construction of a DR methods. This differs from the classical
fixed-link approach, where a closed set of relationships is
defined, and their meaning set once and for all. The benefit
of free-links approach is that it leaves considerable freedom
in use; its main downside is that it is hard to define, even
manual, techniques for the analysis of its graphs. The fixed-
link approach allows for the definition of analysis techniques,
although the tendency to use many relationships renders the
definition of alorithms for the analysis of graphs difficult.
ACE adopts a third option, which has not been explored
elsewhere to the best of our knowledge. ACE has a single
relationship, the meaning of which are derived from the
labels of vertices that it connects. An inference, conflict,
and preference label does not designate a specific inference
rule, conflict rule, or preference rule: one inference vertex
may capture the application of modus ponens, another the
application of defesible inference; one preference vertex
may capture the application of a transitive preference order,
while another may capture the application of an intransitive
preference. Finally, and very importantly, ACE allows one
to accept or reject the application of an inference, conflict,
and/or preference rule, which is clearly impossible in the
fixed-links approach to the construction of DR methods. If
links are fixed, no meta-reasoning on them is allowed by the
DR method itself. Making the links free is no better solu-
tion: what are then the criteria to accept or reject an arbitrary
link? ACE is interesting because it leaves the freedom in
the actual choice of an inference, conflict, or preference,
while at the same time fixing how an inference, conflict, or
preference relates, in terms of acceptability, to another i, I,
C, or P vertex. E.g., 1; — I — 1, tells us in terms of
acceptability that i; does not make i, unacceptable, but is
evidence to the acceptability of is, and this regardless of the
actual inference applied to conclude is from i;. By writing
i3 — I — 1o, we may be abbreviating the expression
“1, supports I5”, where “supports” has the same meaning as
in IBIS. T ini; — I — 1o is thus locally defined (as
opposed to fixed-lines approach), but we still have precise
criteria for accepting or rejecting any local reading of I in
i; — I — iq (as opposed to the absence of these criteria
in the free-links approach): we will reject it if the evaluation
algorithm labels it R. Overall, ACE shows a novel way to
balance the tradeoff between freedom in use and the auto-
mated analysis of rationale, without falling into extremes of
the usual fixed-links, or the recent free-links approach to the
construction of DR methods.

66

6 Conclusions and Future Work

Perfectly valid RE artifacts capture exactly what the stake-
holders really need. We distinguished this absolute validity
from relative validity. The latter asks if the stakeholders
agree on the content of an RE artifact, being thereby relative
to the stakeholders. Checking relative validity inevitably
leads to a discussion between the stakeholders and the re-
quirements engineer. This paper offered the acceptability
condition (§2-3.2) on an artifact as a proxy for relative valid-
ity, and the ACE framework for the evaluation of the accept-
ability condition via the analysis of discussions. If the ac-
ceptability condition holds, then this signals that the relative
validity verifies for the given artifact and for the participants
in a given discussion. The ACE framework incorporates a
simple, but expressive language for the representation of the
pieces of information exchanged in a discussion, and the in-
ference, conflict, and preference relationships between these
pieces of information. Discussions are represented via di-
rected labeled graphs. We suggested an algorithm to retrieve
subgraphs in order to inform the discussions between the
participants. ACE incorporates another algorithm to evaluate
the acceptability condition in these graphs. Data from actual
use will expectedly open many questions regarding usability
and relevance in practice.

References

[1] B. Boehm, P. Grunbacher, and R. O. Briggs. Developing groupware
for requirements negotiation: Lessons learned. IEEE Software, 2001.

C. Chesiievar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari,
M. South, G. Vreeswijk, and S. Willmott. Towards an argument
interchange format. Knowl. Eng. Rev., 21(4):293-316, 2006.

J. Conklin and M. L. Begeman. gibis: a hypertext tool for exploratory
policy discussion. ACM Trans. Inf. Syst., 6(4):303-331, 1988.

R. Darimont and A. van Lamsweerde. Formal refinement patterns
for goal-driven requirements elaboration. In SIGSOFT FSE, pages
179-190, 1996.

V. Gervasi and B. Nuseibeh. Lightweight validation of natural lan-
guage requirements. Software—Practice & Exp., 32:113-133, 2002.
J. A. Goguen and C. Linde. Techniques for requirements elicitation.
In Proc. Int. Symp. Req. Eng., pages 152-164, 1993.

I. J. Jureta, S. Faulkner, and P-Y. Schobbens. Clear justification
of modeling decisions for goal-oriented requirements engineering.
Requir. Eng., 13(2):87-115, 2008.

1. J. Jureta, J. Mylopoulos, and S. Faulkner. Towards a theory of re-
quirements elicitation: Acceptability condition for the relative validity
of requirements, 2009. http://arxiv.org/abs/0902.0924v1.

J. C. S. P. Leite and P. A. Freeman. Requirements validation through
viewpoint resolution. /[EEE T. Softw. Eng., 17(12):1253-1269, 1991.
P. Louridas and P. Loucopoulos. A generic model for reflective design.
ACM Trans. Softw. Eng. Methodol., 9(2):199-237, 2000.

M. McGrath. Propositions. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Fall 2008.

S. Uchitel, R. Chatley, J. Kramer, and J. Magee. Goal and scenario
validation: a fluent combination. Req. Eng., 11:123-137, 2006.

P. Zave. Classification of research efforts in requirements engineering.
ACM Comput. Surv., 29(4):315-321, 1997.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

