
Continually Learning Optimal Allocations
of Services to Tasks

Youssef Achbany, Ivan J. Jureta, Stephane Faulkner, and Francois Fouss

Abstract—Open service-oriented systems which autonomously and continually satisfy users’ service requests (SRs) to optimal levels

are an appropriate response to the need for increased automation of information systems. Given an SR, an open service-oriented

system interprets the functional and nonfunctional requirements laid out in the request and identifies the optimal selection of

services—that is, identifies services. These services’ coordinated execution optimally satisfies the various requirements laid out in the

SR. When selecting services, it is relevant to: 1) revise selections as new services appear and others become unavailable, 2) use

multiple criteria, including nonfunctional ones to choose among competing services, 3) base the comparisons of services on observed,

instead of advertised performance, and 4) allow for uncertainty in the outcome of service executions. To address issues 1-4, we

propose the Multicriteria Randomized Reinforcement Learning (MCRRL) approach to service selection. MCRRL learns and revises

service selections using a novel multicriteria-driven (including various quality-of-service parameters, deadline, reputation, cost, and

user preferences) reinforcement learning algorithm, which integrates the exploitation of acquired data about individual services’ past

performance with optimal, undirected, continual exploration of new selections that involve services whose behavior has not been

observed. The reported experiments indicate the algorithm behaves as expected and outperforms two standard approaches.

Index Terms—Optimization of services systems. artificial intelligence learning, distributed artificial intelligence learning.

Ç

1 INTRODUCTION

MANAGING increasingly complex information systems is
a key challenge in computing (e.g., [79] and [70]). It is

now widely acknowledged that degrees of automation
needed in response cannot be achieved without open,
distributed, interoperable, and modular information sys-
tems capable of dynamic adaptation to changing operating
conditions. Among the various, often overlapping ap-
proaches to building such systems, service-orientation
stands out, for it uses the World Wide Web infrastructure,
standards for describing and enabling interaction between
services are available, attention is invested toward increas-
ing interoperability, and there is an uptake in industry.

A service is a self-describing and self-contained modular
application designed to execute a well-delimited task and
that can be described, published, located, and invoked over a
network [72], [76]. Services are offered by service providers,
i.e., organizations that ensure service implementations,
advertise service descriptions, and provide related technical
and business support. A service-oriented system incorpo-
rates service selectors. A service selector receives service
requests (SRs) from human users or other systems, then
discovers, selects, and coordinates the execution of services

so as to fulfill given SRs. Service-oriented systems ought to
be open to permit many services to participate. To be
adaptable, service provision should be performed by dyna-
mically selecting and composing the participating services
according to users’ (be they people or other systems) various
functional and quality (i.e., nonfunctional) requirements.
Such adaptable and open service-oriented systems (AOSS) are
likely to operate on the SemanticWeb [64], [73], [72], [77], i.e.,
a next generation of theWorldWideWeb on which services’
properties, capabilities, interfaces, effects, and qualities and
data exchanged between services are described in an
unambiguous, machine-understandable form.

Building AOSS on the Semantic Web involves many
issues already treated to varying degrees in the literature—
among them, descriptions of services’ interfaces, capabilities,
behaviors, and qualities (e.g., [66], [57], [63], and [59]), service
discovery (e.g., [61], [87], [88], and [89]), service selection
(e.g., [29], [55], [84], [85], and [86]), service composition (e.g.,
[75], [71], [74], and [68]), and ontologies and ontology
languages (e.g., [73], [67], [59], [58], [60], and [78]).

Fulfilling an SR in anAOSS often involves the execution of
several tasks requiring the participation of various services.
When the SR specifies only the goal to achieve, but not the
way to do so, that is, not the process to perform, the problem
is one of services composition. We are interested in the other
case, relevant when the SR describes the process to execute.
When the process to execute is known, the problem of
services selection is which of the available services should be
allocated to execute the tasks in the process so as to best
satisfy the requirements laid out in the SR. Selection of
services consists of identifying the services able to perform
the required tasks, allocating the relevant ones to corre-
sponding tasks, and coordinating services’ execution
according to the process model. This paper focuses on the

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008 141

. Y. Achbany is with the Information Systems Research Unit (ISYS),
Université Catholique de Louvain, Place des Doyens, 1 (office a.119), B-1348
Louvain-La-Neuve, Belgium. E-mail: youssef.achbany@uclouvain.be.

. I.J. Jureta and S. Faulkner are with PReCISE, University of Namur, rue de
Bruxelles 61, B-5000 Namur, Belgium.
E-mail: {ivan.jureta, stephane.faulkner}@fundp.ac.be.

. F. Fouss is with the Department of Management, Facultés Univeristaire
Catholiques de Mons, rue de Bruxelles 61, B-5000 Namur, Belgium.
E-mail: francois.fouss@fucam.ac.be.

Manuscript received 14 Nov. 2008; revised 21 Nov. 2008; accepted 3 Dec.
2008; published online 9 Dec. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TSC-2008-11-0102.
Digital Object Identifier no. 10.1109/TSC.2008.12.

1939-1374/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

service selection problem under the constraints of openness,
resource distribution, and adaptability to changing service
availability with regards to multiple criteria and constraints
arising from users’ requirements given in the SR.Our problem is
therefore that of defining an appropriate task allocation (TA)
procedure that guides service selectors in an AOSS and when
selecting services for a given SR. “TA” designates the
problem of allocating individual services to tasks specified
in the process model of an SR. “Procedure” denotes an
algorithm (or some other form of behavior description) that
governs how the selector chooses a particular selection of
services (i.e., a particular allocation of services to tasks in a
process model of a request) among the set of all potential
selections.

Defining a TA procedure for selectors in AOSS is
rendered difficult by the necessity to account for the
following:

. The variation in the pool of potential services to consider
in a selection. The set of services available at any time
changes—new services may become available, while
others become unavailable. There is consequently no
guarantee that a selection of services proved relevant
over some past period remains such throughout
runtime.

. The availability of many competing services. Usually,
many services are able to execute a particular task
within an SR, each satisfying to a different level
some set of criteria, so that one service among the
competing ones needs to be selected.

. The nondeterminism of services’ executions. In actual
application, there is no certainty that a service will
execute as expected and produce the exact antici-
pated output.

A TA procedure which acknowledges and is robust with
regards to the above ought to perform the following:

1. Revise service selections as new services appear and
the services participating in previous selections
become unavailable. In other words, the services
ought to be selected at runtime rather than at design
time. Otherwise, newly available services are not
taken into account so that selections will fail to fulfill
an SR to the desired extent if a participating service
becomes unavailable.

2. Use multiple criteria (e.g., price, reliability, reputa-
tion, etc., including the preferences and constraints
set by the requester) to choose one among compet-
ing services. When competing services are available,
a rich set of comparison criteria is required to
discriminate among competitors. Fine differences
between competing services may not be accounted
for if a very restricted set of criteria is used.

3. Avoid selecting services based on values of criteria
that are advertised by the service providers. Instead,
evaluate each service on the grounds of observed
behavior. As providers of the services compete, each
provider has the incentive to advertise better
performance than the competitor, so that advertised
values over selection criteria may not reflect the
actual performance of some services.

4. Allow for uncertainty in the outcome of executions
of individual services involved in a selection.
Additional cost is otherwise incurred in developing
monitoring mechanisms to reestablish functionality
when unexpected outputs are obtained.

To enable 1-4, we advocate that the selection of services
optimal with regards to a set of criteria needs to be learned
at runtime and revised as new services appear and
availability of old services changes, whereby the learning
should be based on observed services performance, and not
the performance advertised by the service providers. A
procedure for allocating services to tasks that enables such
learning should both exploit the historical data on the
observed performance of services and explore new selection
options to avoid relying excessively on past data. To this
aim, we suggest the Multicriteria Randomized Reinforcement
Learning (MCRRL) approach to service selection. MCRRL
integrates two components:

. A generic SR model to describe the process that the
selected services need to execute and the criteria and
constraints to meet when executing it. The SR model
highlights the kind of information that the selection
algorithm requires from the service requester when
allocating services to tasks in the process.

. A reinforcement learning (RL) algorithm, called the
Randomized Reinforcement Learning (RRL) Algo-
rithm, selects the services that will subsequently
perform tasks specified in the SR. The algorithm
decides on the services to select among those
competing, based on multiple criteria (including
various quality-of-service (QoS) parameters, dead-
line, reputation, cost, and user preferences), while
both exploiting available service performance data
and exploring new selection options.

The principal contribution of this paper is the adaptation
of the algorithm suggested in [39] for use in service selection.
Compared to that work, the algorithm is adapted herein for
the service selection problem, extended for constrained
search for optimal service selections, and accommodates
concurrent task execution (i.e., parallelism in processes
described in SRs). None of the adaptations and extensions is
trivial. We believe another important contribution of a more
general kind is present; namely, compared to related work
(see Section 6), this paper presents a case for studying
further—within the service selection field of inquiry—the
use of RL algorithms that integrate the exploitation of
available data with exploration of new selections. As this
paper illustrates, this integrative approach is of clear interest
when the aim is to construct a service-oriented systemwhich
is open (so that new services can appear and service
availability is not guaranteed at all times) and makes service
selections at runtime, whereby each selection is to be
optimal with regards to multiple criteria.

This paper is structured as follows: Section 2 provides a
brief introduction to RL in order to facilitate the under-
standing of the rest of this paper. The notions of exploita-
tion and exploration of data are also explained. Section 3
presents the first part of the MCRRL approach to service
selection, namely, the generic model for writing SRs, which
describes the process to execute and the criteria and values

142 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

thereof to meet. Section 4 presents the second part of the
MCRRL approach, that is, the RRL Algorithm, that takes as
its input the SR and outputs the appropriate service
selection, then continually revises that selection. Simulation
results are presented and discussed in Section 5, where the
MCRRL Algorithm is evaluated against comparable ap-
proaches grounded in RL. Section 6 reviews related work.
Section 7 closes this paper with a summary of conclusions
and pointers for future effort.

2 SELECTION VIA REINFORCEMENT LEARNING

One of the main goals of automating service selection is to
reduce as much as possible the intervention of the requestor
(be it a human user or another system) in the fulfillment of a
given SR. Ideally, only high-level goals need to be specified,
and the system would take care of all activities needed to
fulfill the goal. If we abstract from the composition
automation issues discussed elsewhere (such as discovering
candidate services, e.g., [8], and matching them, e.g., [32]),
another important issue is the selection of services that are
to participate in performing the process described in an SR.
This problem is referred to as the TA problem in the
remainder of this paper.

RL (see, e.g., [40] for an introduction) is a particularly
attractive approach to allocating tasks to services. RL is a
collection of methods for approximating optimal solutions to
stochastic sequential decision problems. An RL system does
not require a teacher to specify correct actions. Instead, the
learning agent tries different actions and observes the
consequences to determinewhich are best. More specifically,
in the RL framework, a learning agent interacts with an
environment over some discrete time scale t ¼ 0; 1; 2; 3;
At each time step t, the environment is in some state, kt. The
agent chooses an action, ut, which causes the environment to
transition to state ktþ1 and to emit a feedback, rtþ1, called a
“reward.” A reward may be positive or negative, but must
be bounded, and it informs the agent on the performance of
the selected actions. The next state and reward depend only
on the preceding state and action, but they may depend on it
in a stochastic fashion. The aim of RL is to use observed
rewards to learn an optimal (or nearly optimal) mapping
from states to actions, which is called an optimal policy,
denoted �. An optimal policy is a policy that maximizes the
expected total reward (see (2) in Section 4.1). More precisely,
the objective is to choose action ut, for all t � 0, so as to
maximize the expected return. Using the terminology of this
paper, RL can be said to refer to trial-and-error methods in
which the service selector learns to make good allocations of
services to tasks through a sequence of “interactions.” In TA,
an interaction consists of the following:

1. The service selector identifies the task to which a
service is to be allocated.

2. The service selector chooses the service to allocate to
the task.

3. The service selector receives a reward after the
service executes the task. Based on the reward,
the service selector learns whether the allocation of
the given service to the task is appropriate or not.

4. The service selector moves to the next task to execute
(i.e., the next interaction takes place).

One advantage of RL over, e.g., queuing-theoretic
algorithms (e.g., [48]), is that the procedure for allocating
services to tasks is continually rebuilt at runtime, i.e., the
selection procedure changes as the observed outcomes of
prior selection choices become available. The service selector
tries various allocations of services to tasks and learns from
the consequences of each allocation. Another advantage is
that RL does not require an explicit and detailed model of
either the computing system whose operation it manages,
nor of the external process that generates the SRs. Finally,
being grounded in Markov Decision Processes, the RL is a
sequential decision theory that properly treats the possibility
that a decision may have delayed consequences, so that the
RL can outperform alternative approaches that treat such
cases only approximately, ignore them entirely, or cast
decisions as a series of unrelated optimizations.

One challenge in RL is the trade-off between exploration
and exploitation. Exploration aims to try new ways of
solving the problem, while exploitation aims to capitalize
on already well-established solutions. Exploration is espe-
cially relevant when the environment is changing: good
solutions can deteriorate and better solutions can appear
over time. When selecting services, exploitation consists of
learning optimal allocations of services to tasks and
systematically reusing learned allocations. Without explora-
tion, the service selector will not consider allocations
different than those which proved optimal in the past. This
is not desirable, since in absence of exploration, the service
selector is unaware of changes in the availability of services
and the appearance of new services, so that how well the
SRs are fulfilled inevitably deteriorates over time in an open
service-oriented system.

Two forms of exploration can be applied: preliminary and
continual online exploration. The aim with preliminary
exploration is to discover the state to reach and to
determine a first optimal way to reach it. As the SR
specifies the state to reach in service selection, continual
online exploration is of particular interest; therein, the set of
services that can be allocated to tasks is continually revised,
so that future allocations can be performed by taking into
account the availability of new services or the change in the
availability of services used in prior selections. Preliminary
exploration is directed if domain-specific knowledge is used
to guide exploration (e.g., [45], [46], [47], and [49]). In
undirected preliminary exploration, the allocation of new
services to tasks is randomized by associating a probability
distribution to the set of competing services available for
allocation to a given task.

To avoid domain-specificity in this paper, the RL
algorithm inMCRRL relies on undirected continual exploration.
Both exploitation and undirected continual exploration are
used in service selection: Exploitation uses available data to
ground the allocation decision in performance observed
during prior executions, whereas exploration introduces
new allocation options that cannot be identified from past
performance data. This responds to the first requirement on
service selection procedures (Item 1, Section 1), namely, that
optimal service selections will be built and revised at
runtime, while accounting for change in the availability of
services and the appearance of new services. As shown in
Section 4, the service selection problem can be formulated as

ACHBANY ET AL.: CONTINUALLY LEARNING OPTIMAL ALLOCATIONS OF SERVICES TO TASKS 143

a global optimization problem which follows either a
deterministic shortest-path (in case the effects of service
executions are deterministic) or a stochastic shortest-path
formulation. Requirement 4 (Section 1) is thus also addressed
through the use of RL to guide service selection—indeed, the
selection procedure changes as the observed outcomes of
prior selection choices become available so that using RL that
incorporates exploration and exploitation introduces an
additional way to deal with uncertainty in service execution,
thus complementing error handling and/or exception
handling deployed in the service-oriented system and
outside of the RL-based service selection approach. Since
the RL approach can be based on the observed performance
of services in selections, and the algorithm inMCRRL accepts
multiple criteria and/or constraints (see Sections 3 and 4),
Requirements 2 and 3 (from Section 1) are fulfilled as well.

3 GENERIC SERVICE REQUEST MODEL

The principal aim of the SR model presented in this section
is to enable the description of the process that a service
selection is to execute, along with the definition of criteria
and constraints that are to guide the selector when
allocating tasks to services. No claims on originality are
made regarding the model: It is purposefully generic, so as
to facilitate the use of MCRRL with available service-
enabling technologies. We define an SR as follows:

Definition 1. An SR consists of the following:

. A process model which defines the sequence of tasks to
execute in order to fulfill the SR.

. A vector of QoS dimensions and their required levels.
Its definition follows a QoS ontology, such as, e.g.,
the FIPA QoS ontology specification [83]. Whatever
the specific QoS ontology, expected qualities are likely
to be specified as (at least) <ðp1; d1; v1; u1Þ; . . . ;
ðpr; dr; vr; urÞ> , where

– pk is the name of the QoS dimension (e.g.,
connection delay),

– dk gives the type of the dimension (e.g., nominal,
ordinal, interval, ratio),

– vk is the set of desired values of the dimension, or a
constraint <;�;¼;�; > on its value, and

– uk is the unit of the dimension value.
. A deadline before which the request must be fulfilled.
. A value for reputation over QoS dimensions that any

participating service must fulfill. It is not necessary to
specify reputation for all qualities over all services;
selective reputation expectations are admitted.

. A maximal monetary cost that the service requester is
ready to pay to have the SR fulfilled.

. A set of assertions, which constrains the pool of
potential services, that can participate in the selection.
For example, a requester may wish to use only some
select providers’ services.

3.1 Process Model

Similarly to Zeng et al. [54], our process model is defined as
a statechart. Statecharts offer well-defined syntax and
semantics so that rigorous analysis can be performed with

formal tools. Another advantage is that they incorporate
flow constructs established in process modeling languages
(i.e., sequence, concurrency, conditional branching, struc-
tured loops, and interthread synchronization). Conse-
quently, standardized process modeling languages, such
as, e.g., BPMN [11], can be used to specify the process
model when using MCRRL.

While the statechart is a useful representation of a
process that needs to be executed, the algorithm in MCRRL
cannot process a statechart in its standard form. Instead, a
statechart is mapped onto a directed acyclic graph, using
Definition 2 and the technique for constructing Directed
Acyclic Hypergraphs (DAHs), described below. Assume
that, to allow concurrency, sets of concurrent transitions
with a common origin state in a statechart are labeled AND.

Definition 2 (adapted from [55]). An execution path of a
statechart is a sequence of states ½t1; t2; . . . ; tn�, such that t1 is
the initial state, tn is the final state, and for every state
tið1 < i < nÞ, the following holds:

. ti is a direct successor of one of the states in
½t1; . . . ; ti�1�.

. ti is not a direct successor of any of the states in
½tiþ1; . . . ; tn�.

. There is no state tj in ½t1; . . . ; ti�1� such that tj and ti
belong to two alternative branches of the statechart.

. All concurrent transitions are executed when an AND
label on transitions is encountered.

It is apparent that an acyclic statechart has a finite
number of execution paths. If the statechart is not acyclic,
it must be “unfolded” [55]: Logs of past executions need to
be examined in order to determine the average number of
times that each cycle is taken. The states between the start
and end of a cycle are then duplicated as many times as
the cycle is taken on average. Assuming for simplicity here
that the statechart is acyclic, an execution path can be
represented as a DAH.

Given a set of distinct execution paths f½t1;k; . . . ; tn;k�g
(k is the index for execution paths), the DAH is obtained
as follows:

. DAH has an edge for every pair ðtask;WÞ which
indicates the allocation of a service W to the given
task. DAH thus has as many edges as there are
possible allocations of services to tasks.

. DAH has a node for every state of the TA problem.
Such a state exists between any two sequentially
ordered tasks of the TA problem (i.e., a node
connecting two sets of edges in the DAH, whereby
the two tasks associated to the two sets of edges are
to be executed in a sequence).

. Whenever there is a set of n tasks to execute
concurrently, each edge between the relevant nodes
in the DAH is labeled with a tuple of pairs, e.g.,
<ðtask1;W1Þ; . . . ; ðtaskn;WnÞ> . Each edge between
such nodes thus shows one possible allocation of a
set of n services to the n concurrent tasks.

Note that 1) the DAH shows all alternative allocations
and all alternative execution paths for a given statechart and
2) conditional branchings in a statechart are represented

144 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

with multiple execution paths. The representation of
concurrent actions is revisited in Section 4.2.

3.2 Selection Criteria

The SR definition—given above—pointed out that various
criteria can be used in specifying a SR, namely, QoS
dimensions along with deadline, reputation, monetary cost,
and explicit requester preferences. Reputation and trust
receive considerable attention in the literature (e.g., [82],
[29], [90], and [91]). In AOSS, the ideas underlying
Maximilien and Singh’s approach [28] can be followed,
with two caveats: They use “trust” to select services from a
pool of competing services and exploit user-generated
opinions to calculate reputation, whereas, herein, services
are selected automatically and reputation can be generated
by comparing service behavior observed by the selector and
the advertised behavior of the services. The following is one
way to define reputation in AOSS.:1

Definition 3. Reputation Rwi

k of a service wi over the QoS
parameter k is

Rwi

k ¼
1

n� 1

Xn
i¼1

vAdv
k � v̂ik

� �2
��time v̂i

kð Þ
h i

;

where timeðÞ returns the time of observation (a natural, 1 for
the most recent observed value, timeðv̂ikÞ > 1 for all others) and
� is the dampening factor for the given quality (can be used with
timesðÞ to give less weight to older observations). We assume
that the advertised quality for the service wi is ~sQoS

wi
¼

hðp1; d1; vAdv
1 ; . . . ; ðpr; dr; vAdv

r ; urÞi and that n observations
v̂ik, 1 � i � n have been made over a quality parameter k.

It is apparent that many criteria can be accounted for
when selecting among alternative service selections. As
decision making in the presence of multiple criteria permits
arguing for and accepting various decision rules (which
differ on, e.g., how criteria are aggregated), the algorithm is
constructed to leave much freedom to the designer in actual
implementation. Moreover, it does not require full specifi-
cation of all possible criteria for each service—instead, it is
up to the requester to choose what criteria to specify. The
algorithm thus optimizes a single normalized variable (i.e.,
taking values in the interval [0,1]). We can suggest three
approaches for defining this variable and the remaining
hard constraints. It is this variable and the hard constraints
that the algorithm takes as input when performing TA:

1. If the requester prefers to have one specific criterion
in the SR optimized, expected values over the
remaining criteria will be treated by the algorithm
as hard constraints, whereby TAs which violate hard
constraints will be eliminated by the algorithm.

2. If the requester prefers to have several criteria
optimized, it is necessary to provide an aggregation
function for the relevant criteria, so that the result of
the function is what the algorithm will optimize.
Guidelines for aggregation functions can be found
in, e.g., [50]. Nonaggregated criteria are treated as
hard constraints.

3. A third option is to have the selector suggest
alternative allocations and the user chooses the one
to apply. The presence or absence of this approach
entirely depends on the choices of the system
designer, as it does not affect the formulation of
the algorithm—it is essentially the first option above,
with the nuance that the user asks the selector to
provide a list of optimal allocations for each criteria,
and then selects manually.

4 RANDOMIZED REINFORCEMENT LEARNING

ALGORITHM

If RL is applied to TA, the exploration/exploitation issue
can be addressed by periodically readjusting the policy for
choosing TAs and reexploring up-to-now suboptimal
execution paths [33], [40]. Such a strategy is, however,
suboptimal because it does not account for exploration. The
RRL algorithm, initially introduced elsewhere [39], is
adapted herein to TA in service selection, allowing the
tasks and services to be matched while

1. optimizing criteria,
2. satisfying the hard constraints,
3. learning about the performance of new services so as

to continually adjust TA, and
4. exploring new options in TA.

The exploration rate is quantified with the Shannon entropy
associated to the probability distribution of allocating a task
to a task specialist. This permits the continual measurement
and control of exploration.

Given the process model, the TA problem is that of the
selector that needs to determine the service that can execute
the tasks according to the requirements laid out in the SR.
By conceptualizing the process in an SR as a DAH (as
explained in Section 3.1), the TA problem amounts to a
deterministic shortest-path problem in a directed weighted
hypergraph. In the hypergraph, each node is a step in the
service selection problem and an edge corresponds to the
allocation of a task tk to a service wWS

k;u , where u ranges over
services that can execute tk according to the criteria set in
the SR. Each individual allocation of a task to a service
incurs a cost cðtk; wWS

k;u Þ, whereby this “cost” is a function of
the criterion (or aggregated criteria, as discussed earlier in
Section 3.2) defined so that the minimization of cost
corresponds to the optimization of the criterion (i.e.,
minimization or maximization of criterion value). This
criterion is the one the requester chooses to optimize,
whereas other criteria are treated as hard constraints.

For illustration, consider the representation of a process
model as a DAH in Fig. 1 where nodes are labeled with
states of the TA problem and edges with costs of alternative
service-TAs (for clarity, only some labels are shown). Nodes
are connected by several edges to indicate the presence of
alternative allocations of the given task to a service. Any
path from the starting node to the destination node in the
graph is a potential complete allocation of services to tasks,
and hence, an execution path through the process.

The TA problem is a global optimization problem: Learn
the optimal complete probabilistic allocation that minimizes
the expected cumulated cost from the initial node to the

ACHBANY ET AL.: CONTINUALLY LEARNING OPTIMAL ALLOCATIONS OF SERVICES TO TASKS 145

1. Reputation is used here instead of trust since no user opinions are
accounted for.

destination node while maintaining a fixed degree of
exploration, and under a given set of hard constraints
specified in the SR. At the initial node in the graph (node s1
in Fig. 1), no services are allocated to tasks, whereas at s10, a
service is allocated to each task on an execution path.

The remainder of Section 4 is organized as follows:
Section 4.1 introduces the notations, the standard determi-
nistic shortest-path problem, and the management of
continual exploration. Section 4.2 extends the unified
framework integrating exploitation and exploration pre-
sented in [3] to deal with concurrent actions. This extension
uses a DAH including two kinds of node: OR and AND
nodes. Section 4.3 describes our procedure for solving the
deterministic shortest-path problem including concurrent
actions with continual exploration, while Section 4.4 details
the algorithms with pseudocode. Finally, Section 4.5 pre-
sents how to satisfy hard constraints by adopting a special
hypergraph structure.

4.1 Reinforcement Learning Formulation of the
Problem

At a state ki of the TA problem, choosing an allocation of
wWS

ki;u
to tki;l (where l ranges over tasks admissible in state ki)

from a set of potential allocations UðkiÞ moves to the next
state and incurs a cost cðtki;l; wWS

ki;u
Þ. Cost is an inverse

function of the value of criterion—denoted r—that the user
wishes to optimize (as explained in Section 3.2). The cost
can be positive (penalty), negative (reward), and it is
assumed that the service graph is acyclic [15]. TA proceeds
by comparing services over estimated r̂ values and the hard
constraints to satisfy (see Section 4.5). The allocation
ðtki;l; wWS

ki;u
Þ is chosen according to a TA policy � that maps

every state ki to the set UðkiÞ of admissible allocations with
a certain probability distribution �kiðuÞ, i.e., UðkiÞ : � �
f�kiðuÞ; i ¼ 0; 1; 2; . . . ; ng. It is assumed that: 1) once the
action (i.e., allocation of a service to a given task) has been
chosen, the state next to ki, denoted ki0 , is known
deterministically, ki0 ¼ fkiðuÞ where f is a one-to-one
mapping from states and actions to a resulting state;
2) different actions lead to different states; and 3) as in
[10], there is a special cost-free destination state; once
the selector has reached that state, the TA process is
complete. Although the current discussion focuses on the

deterministic case, extension to the stochastic case is
straightforward and discussed elsewhere [3] in order to
avoid introducing further formalisms that would make this
paper considerably more difficult to read.

Recall that one of the key features of RL is that it
explicitly addresses the exploration/exploitation issue as
well as the online estimation of the probability distributions
in an integrated way. Then, the exploration/exploitation
trade-off is perceived as a global optimization problem:
Find the exploration strategy that minimizes the expected
cumulated cost, while maintaining fixed degrees of ex-
ploration at same nodes. In other words, exploitation is
maximized for constant exploration. To control exploration,
entropy is defined at each state.

Definition 4. The degree of exploration Eki at state ki is
quantified as

Eki ¼ �
X

u2UðkiÞ
�kiðuÞ log�kiðuÞ; ð1Þ

which is the entropy of the probability distribution of the TAs
in state ki [16], [23]. Eki characterizes the uncertainty about
the allocation of a service to a task at ki. It is equal to zero
when there is no uncertainty at all (�kiðuÞ reduces to a
Kronecker delta); it is equal to logðnkiÞ, where nki is the number
of admissible allocations at node ki, in the case of maximum
uncertainty, �kiðuÞ ¼ 1=nki (a uniform distribution).

Definition 5. The exploration rate Er
ki
2 ½0; 1� is the ratio

between the actual value of Eki and its maximum value:
Er

ki
¼ Eki= logðnkiÞ.

Fixing the entropy at a state sets the exploration level for
the state; increasing the entropy increases exploration up to
the maximal value in which case there is no more
exploitation—the next allocation is chosen completely at
random (using a uniform distribution) and without taking
the costs into account. Exploration levels of a selector can
thus be controlled through exploration rates. Service
selection then amounts to minimizing total expected cost
V�ðk0Þ accumulated over all paths from the initial state k0 to
the final state:

V�ðk0Þ ¼ E�

X1
i¼0

cðki; uiÞ
" #

: ð2Þ

The expectation E� is taken on the policy �, that is, on all
the random choices of action ui in state ki.

4.2 Dealing with Task Concurrency

We use AND/OR graphs to represent a process model
including concurrent tasks that selected services need to
execute. An AND/OR graph G can be viewed as a
generalization of a directed graph with a special node k0,
called the initial (or root) node, and a nonempty set of
terminal nodes. The start node k0 represents the given
problem to be solved, while the terminal nodes correspond
to possible solutions. The nonterminal nodes of G are of
two types: OR and AND. An OR node can be solved in
any one of a number of alternate ways, but an AND node
is solved only when every one of its immediate subpro-
blems is solved.

146 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

Fig. 1. The service provision problem as a labeled DAH where nodes s5
and s6 are AND nodes. For illustration, some edges are labeled with the
cost incurred for moving between the given states through the given
allocation. For instance, if the selector chooses to allocate the service
wWS

ki;u
to task tki;l at some state, the cost for doing so is cðtki;l; wWS

ki;u
Þ.

Fig. 2 shows two examples of AND/OR graphs. The
admissible actions in state ki are UðkiÞ ¼ fu1 ¼ 1; u2 ¼ 2;
u3 ¼ 3g and the distribution �ki specifies three probabilities:
�kiðu1Þ, �kiðu2Þ, and �kiðu3Þ. In the lower part of Fig. 2, an
AND node, ki, is represented by a double circle. The
admissible actions still remain the same, but there is no
probability distribution because all available actions need to
be executed in ki in order to move to the next state.

In the deterministic case and if all the concurrent actions
lead to the same state, the total expected cost of an AND
state ki is given by

V ðkiÞ ¼ cðki; �uÞ þ V ðki0 ; �uÞ; with �u ¼ UðkiÞ and ki 6¼ kd; ð3Þ
where ki0 �u ¼ fkið�uÞ is the next state, cðki; �uÞ is the cost in-
curred when concurrent tasks of �u are executed in state ki,
and kd is the destination state (i.e., final or goal state). Recall
that the aim of RRL is to minimize the total expected cost
V ðkiÞ accumulated along a path ki; kiþ1; . . . in the DAH, and
starting from state ki and ending in the destination state kd.

Equation (3) represents the special case where all the
concurrent actions lead to the same state, i.e., 8u1 2 UðkiÞ,
8u2 2 UðkiÞ fkiðu1Þ ¼ fkiðu2Þ for all AND node ki. To extend
our model to the most general case (see Fig. 2), i.e., 9ðu1 2
UðkiÞ and u2 2 UðkiÞ), fkiðu1Þ 6¼ fkiðu2Þ, where ki is an AND
node, we assume that the costs corresponding to the
execution of the actions are independent (i.e., execution
time, the use of independent resources, . . .). In this case, the
extension of (3) to concurrent actions leading to different
states is given by

V ðkiÞ ¼
X

u2UðkiÞ
cðki; uÞ þ V ðki0 ; uÞð Þ; with

ki0;u ¼fkiðuÞ and ki 6¼ kd:

ð4Þ

In this paper, we consider only independent costs (i.e.,
additive costs), then cðki; �uÞ ¼

P
u2�u cðki; uÞ. In case costs

are not independent, (3) will integrate the relation between
the costs.

A specific issue to address when dealing with concurrent
tasks is establishing the termination schemes. A termination
scheme determines when the action that follows the set of
concurrent actions is executed. Three termination schemes
are proposed by Rohanimanesh and Mahadevan [36], [37].
For instance, the termination scheme �any means that the
next action is executed after any of the concurrent actions
finish, while the nonterminated actions are interrupted.
Alternatively, in �all, the selector waits until all concurrent
actions finish before proceeding to the following action.
Other termination schemes can be defined by combining
�any and �all.

4.3 Computation of the Optimal Policy

When the selector chooses to allocate a service in state ki,
two cases can arise: 1) the current state ki is either an OR
state and tki;l is a single task, or 2) ki is an AND state and tki;l
is a set of concurrent tasks. In the case of a single task, the
selector performs the allocation of the service wWS

u to the
task tki;l and the associated cost cðtki;l; wWS

u Þ is incurred and
is denoted; for simplicity, cðki; uÞ (note that the cost may
also vary over time in a dynamic environment). The selector
then moves to the new state, ki0 . In the case of concurrent
tasks, services are allocated to all tasks of tki;l in parallel.
Depending on the termination scheme (i.e., �any or �all, or
some combination of �any and �all), the selector incurs the
associated cost cðki; uÞ and moves to the new state ki0 .This
allows the selector to update the estimates of the cost, of the
policy, and of the average cost until destination. These
estimates will be denoted by bcðki; iÞ, b�kiðiÞ and bV ðkiÞ. The
RRL for an acyclic graph, where the states are ordered in
such a way that there is no edge going backward (i.e., there
exists no edge linking a state ki0 to a state ki, where ki0 is a
successor state of ki ðki0 > kiÞ), is as follows (a more detailed
technical treatment can be found in [3]):

1. Initialization phase

. Set bV ðkdÞ ¼ 0, which is the expected cost at the
destination state.

2. Computation of the TA policy and the expected
cost under exploration constraints. For the state
ki ¼ ðkd � 1Þ to the initial state k0, compute the
following:

. Choose a task tki;j to allocate to a service u with
current probability estimate b�kiðuÞ:
– If tki;j is a single task, observe the current

cost cðki; uÞ for performing this action and
update its estimate bcðki; uÞ:

bcðki; uÞ cðki; uÞ: ð5Þ

– If tki;j is a set of concurrent tasks, the selector
allocates in parallel services to all tasks of
tki;j. The next decision epoch occurs (i.e., the
moment when selector can jump to the next

ACHBANY ET AL.: CONTINUALLY LEARNING OPTIMAL ALLOCATIONS OF SERVICES TO TASKS 147

Fig. 2. A representation of a state k in terms of OR and AND nodes.

state ki0) depending of the termination
scheme chosen. The bcðki; uÞ is updated by

bcðki; uÞ X
uj2u

cðki; ujÞ: ð6Þ

. Update the probability distribution for
state ki as

b�kiðuÞ ¼ exp �b�ki bcðki; uÞ þ bV ðki0 Þ� �h i
P

u02UðkiÞ
exp �b�ki bcðki; u0Þ þ bV ðki00 Þ� �h i ; ð7Þ

where ki0 ¼ fkiðuÞ and ki00 ¼ fkiðu0Þ, and �ki is set
in order to respect the prescribed degree of
entropy at each state (see (1) which can be
solved by a simple bisection search). It is
apparent that this probability distribution law
for the allocation of services to tasks minimizes
the expected cost (see (2)) from the starting node
to the destination node for a fixed exploration
rate [3], [39].

. Update the expected cost of state ki:

– If ki is an OR state,

bV ðkiÞ ¼ P
u2UðkiÞ

b�kiðuÞ bcðki; uÞ þ bV ðki0 Þh i
bV ðkdÞ 0; where kd is the destination state

8><>: ð8Þ

with ki0 ¼ fki and ki 6¼ kd.

– If ki is an AND state,

bV ðkiÞ P
u2UðkiÞ

bcðki; uÞ þ bV ðki0 Þ;bV ðkdÞ 0; where kd is the destination state

(
ð9Þ

with ki0 ¼ fkiðuÞ and ki 6¼ kd.

Various approaches can be applied to update the
estimated criterion r̂u; e.g., exponential smoothing
leads to

bru ��ru þ ð1� �Þbru; ð10Þ
where �ru is the observed value of the criterion for
wWS

u and � 2�0; 1½ is the smoothing parameter.
Alternatively, various stochastic approximation up-
dating rules could also be used. The selector updates
its estimates of the criterion each time a service
performs a task and the associated cost is updated
accordingly.

4.4 Selector Learns the Allocation Decision
Procedure

Algorithms in Figs. 3 and 4 illustrate how the selector
makes allocation decisions and learns the value iteration of
its decisions. The main variables and functions are

. G: the hypergraph representing all DAG and all
alternative allocations for a given process model,

. Entropy: the exploration rate fixed by the service
requester,

. k: the current state of the TA problem, which is a
node in the hypergraph,

. b�: the policy of the current graph learned by the
selector,

. bV ðstate kÞ: the value function of the current graph
evaluated by the selector,

. bcðstate k; action uÞ: the execution cost for each state
and each available allocation in this state,

. terminalStateðgraph GÞ: returns the set of terminal
states in a hypergraph G,

. chooseActionðpolicy �k; state kÞ: returns an action
avalaible at OR state k and chosen by following the
policy b�k, and

. takeActionsðstate kÞ: returns a concurrent action at
AND state k.

148 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

Fig. 3. The learning algorithm used by the selector to allocate services to
single or concurrent tasks.

Fig. 4. The algorithm allocating a set of concurrent tasks with a

determined termination scheme.

Step 1.2 corresponds to the initialization stage. We get
the initial state of the graph, its policy, its value function,
and its cost matrix. Steps 1.3-1.10 represent the allocation
performed by the selector from the initial state to a
destination (or termination). Step 1.11 corresponds to the
updating stage of the value function, policy, and current
cost for each visited state.

Algorithm 2 in Fig. 4 executes a set �u of concurrent
actions corresponding to the allocation of concurrent tasks.
Steps 2.4-2.13 allocate the set of concurrent tasks in parallel
according to the termination scheme chosen. Steps 2.7-2.13
wait until the end of allocation decisions following the
termination scheme. Step 2.14 computes the total cost of
executing the set of concurrent actions.

4.5 Satisfying Hard Constraints

Hard constraints are satisfied by adopting a special
hypergraph structure and TA process, detailed in this
section and inspired by critical-path analysis (see, for
instance, [6]). As shown in Fig. 1, each node of the graph
represents the completion of a task and each edge the
assignment of a service to the specific task. Each path from
the starting node (e.g., node s1 in Fig. 1) to the destination
node (node s10 in Fig. 1) corresponds to a sequence of
services assigned to tasks to ensure the completion of the SR
within the prescribed hard constraints. The model thus
assumes that there are alternative ways for completing the
SR. The topology of the graph—i.e., the node structure and
the tasks associated to edges between the nodes—is
provided by the designer through the SR, so that the graph
is a graphical model of the different ways the service can be
performed as a sequence of tasks. Each constraint will be of
the form “cannot exceed a given predefined quantity”
(upper bounds); for instance, the total duration along any
path should not exceed some predefined duration. Exten-
sions to interval constraints could be handled as well, but
are not reported in this paper.

To illustrate TA while maintaining the hard constraints
satisfied, let gki be the vector containing the largest values,
for each quantity subject to a constraint, along any path
connecting the starting node (called k0) to node ki, and hki

be the vector containing the largest values, for each quantity
subject to a constraint, along any path connecting node ki to
the destination node (called kd). Further, let s

QoS
u ¼ ðs1u; s2uÞ

be the vector containing hard constraints on two QoS
criteria (for the sake of simplicity, 2D criteria vectors are
considered; extension to n-dimensional vectors is straight-
forward). It follows that gki represents the worst sQoS

u when
reaching ki, while hki is the worst sQoS

u for moving from ki to
kd. Computing the two vectors is straightforward in
dynamic programming (e.g., [6]):

gk0 ¼ 0

gki ¼ maxP ðkiÞ!ki SQoS
P ðkiÞ!ki

þ gP ðkiÞ
n o

;

(
ð11Þ

hk0 ¼ 0

hki ¼ maxki!SðkiÞ SQoS
ki!SðkiÞ þ hSðkiÞ

n o
;

(
ð12Þ

where P ðkiÞ is the set of predecessor nodes of ki and SðkiÞ
is the set of successor nodes of ki. When computing gki ,

the maximum is taken on the set of edges reaching ki (i.e.,
P ðkiÞ ! ki); while when computing hki , the maximum is
taken on edges leaving ki (i.e., ki ! SðkiÞ). sQoS

u is the QoS
criteria vector ðs1u; s2uÞ for a service u associated to an edge.
Any vector gki < smax and hki < smax is acceptable since
it does not violate the constraints (assuming smax ¼
ðs1;max

u ; s2;max
u Þ contains upper bounds on hard constraints).

Suppose then that the selector considers assigning a task
on an edge between nodes ki and kj to a service with a
vector sQoS of QoS criteria. It is clear that the service is
eligible for the given task iff gki þ sQoS þ hkj < smax (the
inequality is taken elementwise). The service is rejected if
the inequality is not verified. This rule ensures that the
constraints are always satisfied along any path, i.e., for
any assignment of services to tasks, it allows to
dynamically manage the inclusion of new services in the
service provision.

5 SIMULATION RESULTS

5.1 Experimental Setup

Allocation of services to tasks in the service provision
problem shown in Fig. 1 was performed. A total of three
distinct services were made available for each distinct task.
Each wk;u is characterized by its actual ru which is the value
of the service’s performance over the optimization criterion
(see Section 4.1). In this simulation, it will simply be the
probability of successfully performing the task (1—
probability of failure). In total, 42 services are available to
the selector for allocation. For all services u, ru 2 ½0; 1�; for
70 percent of the services, the actual ru is hidden (that is, it
is unknown to the selector) and its initial expected value bru
is set, by default, to 0.3 (high probability of failure since the
behavior of the services has never been observed up to
now), while the actual ru value is available to the selector
for the remaining 30 percent (assuming these services are
well known to the selector). The actual ru is randomly
assigned from the interval [0.5, 1.0] following a uniform
probability distribution. It has been further assumed thatbcðti; wuÞ ¼ �lnðbruÞ, which means that it is the product of
the ru along a path that is optimized (this is a standard
measure of the reliability of a system). After all services are
allocated, the selected services execute their respective
tasks according to their actual ru value (with failure 1� ru).
The estimated service criterion ru is then updated by
exponential smoothing, according to (10). In that equation,
�ru equals 1 if wu is successful at executing the task it has
been allocated, 0 otherwise. Estimated costs are of course
updated in terms of the bru and each time a complete
allocation occurs, the probability distributions of choosing
a service are updated according to (8) and (9). Complete
allocations (10,000) were simulated for exploration rates
20 percent and 30 percent.

5.2 Results

The RRL is compared to two other standard exploration
methods, "-greedy and naive Boltzmann (see [3] for details on
these algorithms), while tuning their parameters to ensure
the same exploration level as for RRL. The success rate is
defined as the proportion of services that are successfully
completed (i.e., all tasks composing the service are allocated

ACHBANY ET AL.: CONTINUALLY LEARNING OPTIMAL ALLOCATIONS OF SERVICES TO TASKS 149

and executed successfully) and is displayed in Figs. 5 and 6
in terms of the run number (one run corresponding to one
complete assignment of services to tasks, criterion estima-
tion, and probability distribution update). Figs. 5 and 6 show
the RRL behaves as expected. Its performance converges
almost to the success rate of the RRL in which all actual r are
known from the outset (i.e., need not be estimated)—and
indicate that exploration clearly helps by outperforming the
allocation system without exploration (which has a constant
75 percent success rate). Fig. 7 compares the three explora-
tion methods by plotting the average absolute difference
between actual ru and estimated bru criterion values for a
30 percent exploration rate. Exploration is therefore clearly
helpful when the environment changes with the appearance
of new service—i.e., exploration is useful for directing the
selector’s behavior in dynamic, changing, and open service-
oriented systems.

6 RELATED WORK

Regarding TA, closest to the present work is the general-
ization of the Semi-Markov Decision Process (SMDP) [41]
model which provides a representation of the selector’s TA
problem. Abdallah and Lesser [1] formulate the TA
problem by extending the original SMDP formulation to
account for randomly available actions and allow concur-
rent task execution. With regards to prior effort (e.g., [20]),
they advance the matter by avoiding only serial task
execution, homogenous executing agents, and deterministic
action availability, while the reported experiments indicate
their approach outperforms the original SMDP and the
Concurrent Action Model [38]. In another paper, Abdallah
and Lesser [2] suggest an algorithm for coordinating work
between selectors: In a distributed architecture, selectors
observe only part of what other selectors can observe, so
that optimal TA across pooled software agents can be
represented as a game with incomplete information. While
coordination across selectors is outside the scope of the
present paper, it can be noted that the learning mechanism
employed by the cited authors does not involve exploration,
only exploitation.

MCRRL improves the responsiveness of the system to
varying availability and appearance of new service because
of exploration. MCRRL allows the execution of potentially
complex processes and permits concurrency, while assum-
ing that the set of available services is changing. A
distinctive characteristic of the selector’s behavior sug-
gested in the present paper is that the MCRRL accounts for
a vector of criteria when allocating tasks, including QoS,
service provision deadline, provision cost, explicit user
preferences, and agent reputation.

Maximilien and Singh [28] propose service selection
driven by trust values assigned to individual services. Trust
is extracted from user-generated reports of past service
performance (as usual in reputation systems) over qualities
defined by a system-specific QoS ontology. The level of
trust depends on the degree to which reputation and
quality levels advertised by the provider match. Similar
approaches have been proposed, yet fail to address service

150 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

Fig. 5. Success rate in terms of run number, for an exploration rate of

20 percent, and for the five methods (no exploration, actual r known,

"-greedy, naive Boltzmann, and RRL).

Fig. 6. Success rate in terms of run number, for an exploration rate of

30 percent, and for the five methods (no exploration, actual r known,

"-greedy, naive Boltzmann, and RRL).

Fig. 7. Average absolute difference between actual ðrÞ and estimated ðbrÞ
criterion values in terms of run number for three exploration methods

("-greedy, naive Boltzmann, and RRL).

selection in open, distributed MAS architecture, further-
more without dynamic allocation so that autonomic
requirements are not fulfilled. By basing selection on trust
only and generating levels of trust from advertised and
user-observed behavior, Maximilien and Singh’s approach
involves learning driven by exploitation of historical
information, but without exploration.

Tesauro et al. [42] present a decentralized multiagent
system architecture for autonomic computing, in which
dynamic TA proceeds as follows: A registry maintains the
list of tasks that available agents can execute, so that when a
service is requested, the registry is consulted and tasks are
allocated to agents capable of fulfilling them. Allocation is
utility-driven, whereby each resource has an associated and
continually updated function which provides the value to
the application environment of obtaining each possible
level of the given resource. Information on the TA
procedure is very limited, seemingly indicating that no
empirical data on the actual performance of individual
agents is employed—i.e., it seems assumed that advertised
performance is the actual performance, thus undermining
the appropriateness of their architecture for an open
system. Shaheen Fatima and Wooldridge [17] suggest a
MAS architecture in which permanent software agents
associated with the system are provided alongside agents
that can enter and leave. Their focus is on minimizing the
number of tasks that cannot be executed by the system
because of overload. No QoS considerations are accounted
for in TA, which undermines realistic application, and it
appears that no learning occurs, which harms adaptability
to varying availability of software agents. Tasks are queued
based on priority values. Klein and Tichy [25] focus on
ensuring reliability and availability through automatic
reconfiguration. Agents are self-interested and selection
proceeds by reward for accomplishing a task. There are no
QoS considerations and no explicit learning based on
observed behavior. Babaoglu et al. [5] suggest an architec-
ture (called “Anthill”) in which agents move around
“nests” of resources in order to determine how a SR can
be executed. Dynamic TA is not introduced in the system,
and it seems no learning is involved.

Zeng et al. [54] proceed to find optimal service selections
through linear programming techniques. In contrast to RL,
their approach considers each service selection as a new
problem to solve, so that there is no learning. Canfora et al.
[13] use genetic algorithms, thus avoiding the need for a
linear objective function and/or linear constraints in the
search for the optimal service selection (required for the
linear programming approach from Zeng et al. [54]).

Casati et al. [93] outline a data-mining approach to
service selection. They analyze past executions of services
and build a set of context-sensitive service selection models
to be applied at each stage of service execution. While they
do exploit historical information, new selections are not
automatically explored. Tong and Zhang [94] suggest a
fuzzy multiattribute decision making algorithm to solve the
service selection problem. They account for five weighted
quality criteria for simple services. Quality vectors are first
normalized, and best and worst services are subsequently
identified. Services closest to the best and farthest from the
worst solution are selected. Again, there is no exploration

and thereby responsiveness to changes in the pool of
services is limited. The same observation applies to Liu
et al.’s work [95]. They outline an approach that establishes
a QoS model to define nonfunctional properties. The model
covers some generic QoS characteristics and allows exten-
sion to other domain-specific quality criteria. Once domain-
specific QoS is fixed, a method is applied to establish a
ranking of service alternatives. The service selection
algorithm determines which service is selected based on
user’s constraints. Available services and their respective
values on criteria are inserted in a matrix. The matrix is
then normalized in order to allow for a uniform measure-
ment of service qualities independently of unit specifics. As
different users have different QoS expectations, the model
then weighs QoS characteristics to rank the services. They
rely on user feedback to compute the reputation of services.
Zhang and Li’s [96] framework constructs business pro-
cesses in order to satisfy business requirements. Their
service selection procedure is equivalent to picking up the
appropriate services from the available service list which
can be dynamically created. A typical business process
comprises a service set. If there are only N services in the
service set, then the total number of the possible business
processes M is defined as the factorial of N. They also
define a sample optimal business process construction
criterion as the one that most closely matches business
requirements as measured by a total error function. In
contrast, we model the business process using a hyper-
graph. We can model all the possible combinations of
services with only one hypergraph. We apply our RRL
model on this hypergraph to dynamically select the
services. We can adjust the exploration rate to face an
unknown and highly dynamic environment (i.e., more
exploration in an unknown environment and more ex-
ploitation in stable environment). Our selection procedure
is also based on a set of hard constraints.

7 CONCLUSIONS AND FUTURE WORK

This paper advocates that service selections optimal with
regards to a set of criteria needed to be learned at runtime
and revised as new services appear and availability of old
services changes, whereby the learning should be based on
observed service performance and not the performance
values advertised by the service providers. To enable such
learning, a selection procedure is needed which both
exploits the data on observed service performance in the
past and explores new composition options to avoid
excessive reliance on past data.

As a response, this paper proposes the MCRRL approach
to service selection. MCRRL combines a generic SR model
and RRL, an RL Algorithm. The SR model describes the
process to execute and the criteria and constraints to meet
when executing it. The RRL selects the services for
performing tasks specified in the SR. The algorithm decides
what services to select among competing services based on
multiple criteria, while both exploiting available data on
service behavior and exploring new selection options.

MCRRL responds to four common requirements when
defining a TA procedure involved in service selection. First,
the RRL uses both exploitation and undirected continual

ACHBANY ET AL.: CONTINUALLY LEARNING OPTIMAL ALLOCATIONS OF SERVICES TO TASKS 151

exploration in service selection: Exploitation uses available

data to ground the allocation decision in the behavior of the

services observed during the execution of prior selections,

whereas exploration introduces new allocation options that

cannot be identified from historical data. Optimal service

selections are thus identified revised at runtime. Second, the

generic SR model, combined with the optimization ap-

proach in the RRL, allows many criteria for comparing

alternative allocations of services to tasks. Third, the

comparison over various criteria relies on observed beha-

vior over the given criteria, instead of values advertised by

service providers. Finally, the algorithm can be extended to

allow nondeterministic outcomes of service executions

(technical details explained elsewhere [3]).
Since undirected exploration may be costly in actual

applications, future work will investigate the performance

of MCRRL within realistic applications, so that the

approach can be optimized for practical settings. We have

defined elsewhere [92] more elaborate models for the

specification of SRs, in which richer descriptions of QoS

requirements can be given. We are looking into how the

RRL Algorithm is to be extended in order to accommodate

these richer SR specifications. We proposed elsewhere [93]

a service selection approach that can deal with trade-offs.

The approach consists of 1) rich QoS models to be used by

service requesters when expressing QoS expectations and

service providers when describing services’ QoS, and for

representing preference and priority relationships between

QoS dimensions, and 2) a multicriteria decision making

technique that uses the models for service selection. We are

working on combining the present approach and the

multicriteria decision making technique we suggested in

[93] to allow conflicts among quality criteria to be managed

at runtime.

REFERENCES

[1] S. Abdallah and V. Lesser, “Modeling Task Allocation Using a
Decision Theoretic Model,” Proc. Fourth Int’l Joint Conf. Autono-
mous Agents and Multi-Agent Systems (AAMAS ’05), 2005.

[2] S. Abdallah and V. Lesser, “Learning the Task Allocation Game,”
Proc. Fifth Int’l Joint Conf. Autonomous Agents and Multi-Agent
Systems (AAMAS ’06), 2006.

[3] Y. Achbany, F. Fouss, L. Yen, A. Pirotte, and M. Saerens, “Tuning
Continual Exploration in Reinforcement Learning,” Neurocomput-
ing, accepted.

[4] Amazon S3 Developer Guide, Amazon Web Services LLC, 2007.
[5] O. Babaoglu, H. Meling, and A. Montresor, “Anthill: A Frame-

work for the Development of Agent-Based Peer-to-Peer Systems,”
Proc. 22nd Int’l Conf. Distributed Computing Systems (ICDCS ’02),
2002.

[6] J. Bather, Decision Theory: An Introduction to Dynamic Programming
and Sequential Decisions. Wiley, 2000.

[7] Distributed and Parallel Database, B. Benatallah and F. Casati, eds.,
special issue on web services, Springer-Verlag, 2002.

[8] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani,
“On Automating Web Services Discovery,” The VLDB J., vol. 14,
pp. 84-96, 2005.

[9] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific Am., pp. 7-15, 2001.

[10] D.P. Bersekas, Dynamic Programming and Optimal Control. Athena
Scientific, 2000.

[11] “Object Management Group/Business Process Management
Initiative,” Business Process Modeling Notation Specification, Final
Adopted Specification dtc/06-02-01, 2006.

[12] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu, “Process
Modeling in Web Applications,” ACM Trans. Software Eng. and
Methodology, vol. 15, no. 4, pp. 360-409, 2006.

[13] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani,
“A Lightweight Approach for QoS-Aware Service Composition,”
The VLDB J., Proc. Second Int’l Conf. Service Oriented Computing
(ICSOC ’04), F. Casati, M.-C. Shan, and D. Georgakopoulos, eds.,
vol. 10, no. 1, 2001.

[14] N. Christofides, Graph Theory: An Algorithmic Approach. Academic
Press, 1975.

[15] T.M. Cover and J.A. Thomas, Elements of Information Theory.
John Wiley & Sons, 1991.

[16] A. D’Ambrogio, “A Model-Driven WSDL Extension for Describ-
ing the QoS of Web Services,” Proc. Int’l Conf. Web Services (ICWS),
2006.

[17] S. Shaheen Fatima and M. Wooldridge, “Adaptive Task and
Resource Allocation in Multi-Agent Systems,” Proc. Fifth Int’l Conf.
Autonomous Agents, 2001.

[18] Google’s Developer Network, Google Inc., 2007.
[19] H. Hannah and A.-I. Mouaddib, “Task Selection Problem under

Uncertainty as Decision-Making,” Proc. First Int’l Joint Conf.
Autonomous Agents and Multi-Agent Systems (AAMAS ’02), 2002.

[20] “International Business Machines. Service-Oriented Architecture,”
IBM Systems J., vol. 44, no. 4, 2005.

[21] N.R. Jennings, “On Agent-Based Software Engineering,” Artificial
Intelligence, vol. 117, pp. 277-296, 2000.

[22] J.N. Kapur and H.K. Kesavan, Entropy Optimization Principles with
Applications. Academic Press, 1992.

[23] A. Keller and H. Ludwig, “The WSLA Framework: Specifying
and Monitoring Service Level Agreements for Web Services,”
J. Network and Systems Management, vol. 11, no. 1, 2003.

[24] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41-52, Jan. 2003.

[25] F. Klein and M. Tichy, “Building Reliable Systems Based on Self-
Organizing Multi-Agent Systems,” Proc. Fifth Int’l Workshop
Software Eng. for Large-Scale Multi-Agent Systems (SELMAS ’06),
pp. 51-57, 2006.

[26] L. Li and I. Horrocks, “A Software Framework for Matchmaking
Based on Semantic Web Technology,” Proc. 12th Int’l World Wide
Web Conf. (WWW ’03), pp. 331-339, May 2003.

[27] E.M. Maximilien and M.P. Singh, “Toward Autonomic Web
Services Trust and Selection,” Proc. Second Int’l Conf. Service
Oriented Computing (ICSOC ’04), 2004.

[28] E.M. Maximilien and M.P. Singh, “Multiagent System for
Dynamic Web Services Selection,” Proc. Fourth Int’l Joint Conf.
Autonomous Agents and Multi-Agent Systems (AAMAS ’05), 2005.

[29] S.A. McIlraith, T.C. Son, and H. Zeng, “Semantic Web Services,”
IEEE Intelligence System, vol. 16, no. 2, pp. 46-53, 2001.

[30] S.A. McIlraith and T.C. Son, “Adapting Golog for Composition of
Semantic Web Services,” Proc. Eighth Int’l Conf. Knowledge
Representation and Reasoning (KR ’02), 2002.

[31] B. Medjahed, A. Bougettaya, and A.K. Elmagarmid, “Compos-
ing Web Services on the Semantic Web,” The VLDB J., vol. 12,
pp. 333-351, 2003.

[32] T.M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[33] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,

S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,
E. Sirin, N. Srinivasan, and K. Sycara, OWL-S: Semantic Markup for
Web Services, W3C Subm., Nov. 2004.

[34] M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara, “Semantic
Matching of Web Services Capabilities,” Proc. First Int’l Semantic
Web Conf. Semantic Web (ISWC ’02), pp. 318-332, June 2002.

[35] M.P. Papazoglou and D. Georgakopoulos, “Service-Oriented
Computing,” Comm. ACM, vol. 46, no. 10, pp. 25-28, 2003.

[36] K. Rohanimanesh and S. Mahadevan, “Decision Theoretic Plan-
ning with Concurrent Temporally Extended Actions,” Proc. 17th
Conf. Uncertainty in Artificial Intelligence (UAI), 2001.

[37] K. Rohanimanesh and S. Mahadevan, “Learning to Take Con-
current Actions,” Proc. 16th Int’l Conf. Neural Information Processing
Systems (NIPS), 2003.

[38] Y. Achbany, F. Fouss, L. Yen, A. Pirotte, and M. Saerens, “Optimal
Tuning of Continual Online Exploration in Reinforcement Learn-
ing,” Proc. 16th Int’l Conf. Artificial Neural Networks (ICANN ’06),
2006.

[39] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

152 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

[40] R.S. Sutton, D. Precup, and S.P. Singh, “Between MDPs and Semi-
MDPs: A Framework for Temporal Abstraction in Reinforcement
Learning,” Artificial Intelligence, vol. 112, nos. 1/2, 1999.

[41] K. Sycara, M. Klush, and S. Widoff, “Dynamic Service Matchmak-
ing among Agents in Open Information Environments,” ACM
SIGMOD Record, vol. 28, no. 1, pp. 47-53, 1999.

[42] G. Tesauro, D.M. Chess, W.E. Walsh, R. Das, A. Segal, I. Whalley,
J.O. Kephart, and S.R. White, “A Multi-Agent Systems Approach
to Autonomic Computing,” Proc. Third Int’l Joint Conf. Autonomous
Agents and Multi-Agent Systems (AAMAS ’04), 2004.

[43] D. Tennenhouse, “Proactive Computing,” Comm. ACM, vol. 42,
no. 5, 2000.

[44] S. Thrun, “Efficient Exploration in Reinforcement Learning,”
technical report, School of Computer Science, Carnegie Mellon
Univ., 1992.

[45] S. Thrun, “The Role of Exploration in Learning Control,” Handbook
for Intelligent Control: Neural, Fuzzy and Adaptive Approaches,
D. White and D. Sofge, eds., Van Nostrand Reinhold, 1992.

[46] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics.MIT Press,
2005.

[47] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi,
“An Analytical Model for Multi-Tier Internet Services and Its
Applications,” Proc. SIGMETRICS, 2005.

[48] K. Verbeeck, “Coordinated Exploration in Multi-Agent Reinforce-
ment Learning,” PhD thesis, Vrije Universiteit Brussel, 2004.

[49] P. Vincke, Multicriteria Decision-Aid. Wiley, 1992.
[50] G. Weikum, ed., “Special Issue on Organizing and Discovering the

Semantic Web,” IEEE Data Eng. Bull., vol. 25, no. 1, pp. 1-58,
2002.

[51] W3C, Simple Object Access Protocol (SOAP), 2003.
[52] W3C, Universal Description, Discovery, and Integration (UDDI),

2003.
[53] W3C, Web Services Description Language (WSDL), 2003.
[54] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng,

“Quality Driven Web Services Composition,” Proc. 12th Int’l World
Wide Web Conf. (WWW ’03), 2003.

[55] C. Zhou, L.-T. Chia, and B.-S. Lee, “DAML-QoS Ontology for Web
Services,” Proc. Int’l Conf. Web Services (ICWS ’04), 2004.

[56] A. Ankolenkar, M. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin,
D. McDermott, S.A. McIlraith, S. Narayanan, M. Paolucci,
T.R. Payne, and K. Sycara, OWL-S: Semantic Markup for Web
Services 1.1. DAML Services Coalition, 2004.

[57] G. Antoniou and F. van Harmelen, “Web Ontology Language:
Owl,” Handbook on Ontologies in Information Systems, S. Staab and
R. Studer, eds., pp. 67-92, Springer-Verlag, 2003.

[58] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull,
M. Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, and
S. Tabet, Proc. W3C Workshop Frameworks for Semantics in Web
Services (SWSF ’05), 2005.

[59] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,
D.L. McGuiness, P.F. Patel-Schneider, and L.A. Stein, “OWL Web
Ontology Language,” World Wide Web Consortium, 2004.

[60] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani,
“On Automating Web Services Discovery,” The VLDB J., vol. 14,
2005.

[61] B. Benatallah and F. Casati, Guest editorial, Distributed and Parallel
Databases, vol. 12, nos. 2/3, pp. 115-116, 2002.

[62] D. Berardi, M. Gruninger, R. Hull, and S. McIlraith, “Towards a
First-Order Ontology for Semantic Web Services,” Proc. W3C
Workshop Constraints and Capabilities for Web Services, 2005.

[63] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific Am., May 2001.

[64] F. Casati, M.-C. Shan, and D. Georgakopoulos, The VLDB J., guest
editorial, vol. 10, no. 1, p. 1, 2001.

[65] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,Web
Services Description Language (WSDL 1.1), 2001.

[66] I. Horrocks, “DAMLþOIL: A Description Logic for the Semantic
Web,” IEEE Data Eng. Bull., vol. 25, no. 1, pp. 4-9, 2002.

[67] I.J. Jureta, S. Faulkner, Y. Achbany, and M. Saerens, “Dynamic
Web Service Composition within a Service-Oriented Architec-
ture,” Proc. Int’l Conf. Web Services (ICWS ’07), 2007.

[68] I.J. Jureta, S. Faulkner, Y. Achbany, and M. Saerens, “Dynamic
Task Allocation within an Open Service-Oriented MAS Architec-
ture,” Proc. Sixth Int’l Joint Conf. Autonomous Agents and Multi-
Agent Systems (AAMAS ’07), 2007.

[69] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.

[70] S. McIlraith and T. Cao Son, “Adapting Golog for Composition of
Semantic Web Services,” Proc. Eighth Int’l Conf. Knowledge
Representation and Reasoning (KR ’02), 2002.

[71] S.A. McIlraith and D.L. Martin, “Bringing Semantics to Web
Services,” IEEE Intelligent Systems, vol. 18, no. 1, pp. 90-93,
Jan./Feb. 2003.

[72] S.A. McIlraith, T.C. Son, and H. Zeng, “Semantic Web Services,”
IEEE Intelligent Systems, vol. 16, no. 2, Mar./Apr. 2001.

[73] B. Medjahed, A. Bougettaya, and A.K. Elmagarmid, “Compos-
ing Web Services on the Semantic Web,” The VLDB J., vol. 12,
2003.

[74] S. Narayanan and S.A. McIlraith, “Simulation, Verification and
Automated Composition of Web Services,” Proc. 11th Int’l World
Wide Web Conf. (WWW ’02), 2002.

[75] M.P. Papazoglou and D. Georgakopoulos, “Service-Oriented
Computing,” Comm. ACM, vol. 46, no. 10, pp. 24-28, 2003.

[76] N. Shadbolt, T. Berners-Lee, and W. Hall, “The Semantic Web
Revisited,” IEEE Intelligent Systems, vol. 21, no. 3, May/June 2006.

[77] “Handbook on Ontologies,” Int’l Handbooks on Information Systems,
S. Staab and R. Studer, eds., Springer, 2004.

[78] D. Tennenhouse, “Proactive Computing,” Comm. ACM, vol. 43,
no. 5, pp. 43-50, 2000.

[79] W3C, Simple Object Access Protocol (SOAP), 2003.
[80] W3C, Universal Description, Discovery, and Integration (UDDI),

2003.
[81] G. Zacharia and P. Maes, “Trust Management through Reputation

Mechanisms,” Applied Artificial Intelligence, vol. 14, 2000.
[82] “Foundation for Intelligent Physical Agents,” FIPA Quality of

Service Ontology Specification, Doc. SC00094A, 2002.
[83] Y. Liu, A.H. Ngu, and L.Z. Zeng, “QoS Computation and Policing

in Dynamic Web Service Selection,” Proc. 13th Int’l World Wide
Web Conf. (WWW ’04), pp. 66-73, 2004.

[84] F. Naumann, U. Leser, and J.C. Freytag, “Quality-Driven Integra-
tion of Heterogenous Information Systems,” Proc. Int’l Conf. Very
Large Data Bases (VLDB ’99), pp. 447-458, 1999.

[85] H. Tong and S. Zhang, “A Fuzzy Multi-Attribute Decision Making
Algorithm for Web Services Selection Based on QoS,” Proc. IEEE
Asia-Pacific Conf. Services Computing (APSCC ’06), pp. 51-57, 2006.

[86] T. Kawamura, J.A. De Blasio, T. Hasegawa, M. Paolucci, and
K. Sycara, “Public Deployment of Semantic Service Matchmaker
with UDDI Business Registry,” Proc. Eighth IEEE Int’l Symp.
Wearable Computers (ISWC ’04), 2004.

[87] R. Akkiraju, R. Goodwin, P. Doshi, and S. Roeder, “A Method for
Semantically Enhancing the Service Discovery Capabilities of
UDDI,” Proc. Workshop Information Integration on the Web (IIWeb),
2003.

[88] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar,
and J. Mille, “METEOR-S WSDI: A Scalable Infrastructure of
Registries for Semantic Publication and Discovery of Web
Services,” J. Information Technology and Management, special issue
on universal global integration, vol. 6, no. 1, pp. 17-39, 2005.

[89] S. Casare and J. Sichman, “Towards a Functional Ontology of
Reputation,” Proc. Fourth Int’l Joint Conf. Autonomous Agents and
Multi-Agent Systems (AAMAS ’05), 2005.

[90] E.M. Maximilien and M.P. Singh, “Conceptual Model of Web
Service Reputation,” ACM SIGMOD Record, vol. 31, no. 4, 2002.

[91] I.J. Jureta, C. Herssens, and S. Faulkner, “A Comprehensive
Quality Model for Service-Oriented Systems,” Software Quality J.,
accepted.

[92] C. Herssens, I.J. Jureta, and S. Faulkner, “Capturing and Using
QoS Relationships to Improve Service Selection,” Proc. 20th Int’l
Conf. Advanced Information Systems Eng. (CAiSE ’08), 2008.

[93] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan, “Probabilistic,
Context-Sensitive, and Goal-Oriented Service Selection,” Proc.
Second Int’l Conf. Service Oriented Computing (ICSOC ’04), 2004.

[94] H. Tong and S. Zhang, “A Fuzzy Multi-Attribute Decision Making
Algorithm for Web Services Selection Based on QoS,” Proc. IEEE
Asia-Pacific Conf. Services Computing (APSCC ’06), pp. 51-57, 2006.

[95] Y. Liu, A.H. Ngu, and L.Z. Zeng, “QoS Computation and Policing
in Dynamic Web Service Selection,” Proc. 13th Int’l World Wide
Web Conf. (WWW ’04), 2004.

[96] L.-J. Zhang and B. Li, “Requirements Driven Dynamic Services
Composition for Web Services and Grid Solutions,” J. Grid
Computing, vol. 2, no. 2, pp. 121-140, 2004.

ACHBANY ET AL.: CONTINUALLY LEARNING OPTIMAL ALLOCATIONS OF SERVICES TO TASKS 153

Youssef Achbany received the MSc degree in
information systems from the Université Notre-
Dame de la Paix in 2004. He is currently a PhD
student in the Information Systems Research
Unit (ISYS), Université Catholique de Louvain,
Louvain-La-Neuve, Belgium. His research inter-
ests include multiagent systems, reinforcement
learning, and probabilistic reputation models.

Ivan J. Jureta currently does scientific research
at the intersection of management science,
microeconomics, and information systems en-
gineering. He is currently with the Department of
Business Administration, University of Namur,
Namur, Belgium.

Stephane Faulkner is an associate professor in
technologies and information systems at the
University of Namur (FUNDP), Belgium, and an
invited professor at the Louvain School of
Management, Université de Louvain (UCL). His
current research interests revolve around re-
quirements engineering and the development of
modeling notations, systematic methods, and
tool support for the development of multiagent
systems, database, and information systems.

Francois Fouss received the MS degree in
information systems and the PhD degree in
management sciences from the Université Cath-
olique de Louvain (UCL), Belgium, in 2002 and
2007, respectively. In 2007, he joined the
Department of Management, Facultés Universi-
taires Catholiques de Mons (FUCaM), Namur,
Belgium, as an assistant professor in computing
science. His main research interests include
data mining and machine learning (more pre-

cisely, collaborative recommendation, graph mining, and network
analysis).

154 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

