
Dealing with Quality Tradeoffs during Service Selection

Caroline Herssens

PReCISE Research Center

Louvain School of Management

Université catholique de Louvain

caroline.herssens@uclouvain.be

Ivan J. Jureta and Stéphane Faulkner

PReCISE Research Center

Louvain School of Management

University of Namur

{ivan.jureta, stephane.faulkner}@fundp.ac.be

Abstract

In a service-oriented system (SoS) service requests de-

fine tasks to execute and quality of service (QoS) criteria

to optimize. A service request is submitted to an automated

service selector in the SoS, which allocates tasks to those

service that, together, can “best” satisfy the given QoS cri-

teria. When the selector cannot optimize simultaneously the

given QoS criteria, users need to specify priorities over the

said criteria. Accounting for users’ QoS priorities is there-

fore necessary during service selection. Once specified by

the requester, quality properties will be used by the selec-

tor to lead autonomic optimization of the service selection

process. We outline and test a selection approach that ac-

commodates priorities and that is based on available Multi

Criteria Decision Making techniques.

1. Introduction

Engineering and managing the operation of increasingly

complex information systems is a key challenge in comput-

ing (e.g., [14]). It is now widely acknowledged that de-

grees of automation needed in response cannot be achieved

without open, distributed, interoperable, and modular sys-

tems capable of dynamic adaptation to changing operating

conditions. Among the various approaches to building such

systems, service-orientation stands out in terms of its re-

liance on the World Wide Web infrastructure, availability of

standards for describing and enabling interaction between

services, attention to interoperability, and uptake in indus-

try.

A service is a self-describing and self-contained mod-

ular application designed to execute a well-delimited task,

and that can be described, published, located, and invoked

over a network [19, 26]. A web service is a service made

available on the World Wide Web. Services are offered by

service providers, i.e., organizations that ensure service im-

plementations, advertise service descriptions, and provide

related technical and business support. A service-oriented

system (SoS) incorporates service selectors. A service se-

lector receives service requests from human users or other

systems, then automatically discovers, selects, and coordi-

nates the execution of services so as to fulfill given service

requests (e.g., [11, 18, 22, 28, 27]). A service request usu-

ally describes what is to be done and how well; that is, the

tasks that stakeholders expect the system to execute and/or

achieve, and the constraints on Quality of Service measures

to meet while performing the tasks.

Service orientation is intended to enable large scale sys-

tems. Many competing services are therefore available to

perform the same tasks. In such a setting, the service se-

lector aims to select the set of services that optimally satis-

fies the QoS considerations laid out in the request, and this

relative to alternative sets of services that can perform the

same tasks. QoS considerations guide the selection process

in presence of many competing services [20, 24]. Appro-

priate comparison of alternative services and subsequent

selection requires expressive QoS models and mechanisms

for managing conflicts that appear in stakeholders’ service

requests (e.g., two QoS criteria are selected for optimiza-

tion, although they are conflicting). Autonomic computing

cannot be realized through service-orientation without such

expressive QoS models and comparison mechanisms.

The QoS model is used in an SoS to make explicit

the various QoS dimensions and characteristics that can

be used to specify QoS considerations in service requests

and measure them at runtime on each service. Any such

model is therefore used (i) by service requesters to spec-

ify the expected quality levels of service delivery; (ii) by

service providers to advertise quality levels that their ser-

vices achieve; and (iii) by service selectors when selecting

among alternative services those that are to participate in a

service composition. Given a QoS model, a service request

may specify that several QoS dimensions be optimized. If

the said dimensions involve tradeoffs, they cannot be op-

timized and additional information is needed in a service

request. Namely, we expect the stakeholders to indicate the

International Conference on Automonic Computing

978-0-7695-3175-5/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAC.2008.8

77

priority over the said QoS dimensions so that an order of

importance is established, and subsequently used to guide

optimization. Though the need for priorities is evident, very

limited work has been performed to deal with them during

service selection.

We cannot reasonably expect the services to indefinetly

maintain same QoS levels. Moreover, new services emerge

and old ones may become unavailable. Selection there-

fore must account for the variations in QoS levels at run-

time to enable self-managed processes. Different classes of

approaches to service selection acknowledge this difficulty

[9, 36]. Most service selection algorithms introduce qual-

ity dimensions either as objective function to be minimized

(e.g., execution duration) or maximized (e.g., availability)

or either as constraints to be satisfied [9, 24, 36]. They un-

fortunately do not allow for priorities among QoS dimen-

sions. Multi-criteria decision making (MCDM) techniques

allow priorities to be accounted for during decision mak-

ing. Proposals that deploy MCDM for service selection are

available [6, 30, 33, 36]. Their shared limitation is that they

cannot accommodate variation of QoS levels at individual

services observed at runtime (that is, they assume known

and stable QoS levels).

Contributions. Instead of developing a particular ser-

vice selection procedure which accommodates priorities be-

tween QoS considerations, we take a different approach: we

provide an extension compatible with (i.e., that can be used

with) available selection approaches. Our approach is based

on the premise that service-oriented systems for autonomic

computing operate in a setting in which QoS levels vary

and are observed at runtime. The approach is based on a

specific class of MCDM techniques: the outranking meth-

ods. The approach enables the definition of a global priority

constraint to be used as an ordinary constraint in a service

selection algorithm. We do not ask for a specific class of

service selection algorithms; any algorithm which proceeds

to select the optimal services and accounts for QoS consid-

erations can be used in conjunction with the present pro-

posal. This is for instance the case with the reinforcement

learning algorithm we suggested elsewhere [11, 10]. The

constraint is relevant because:

• it allows priorities to be accounted for during service

selection in algorithms that originally cannot accom-

modate priorities;

• it can be integrated with various available service se-

lection algorithms, and regardless of their specific op-

timization functions;

• it enables automatic optimization of user preferences

by the service selector.

The paper makes an additional, conceptual contribution.

Our approach requires richer QoS models than those avail-

able in the literature, so that we introduce an extension to

the QoS metamodel of the Unified Modeling Language.

The model will facilitate the representation of priorities.

Organization. We first present the QoS model we subse-

quently use in service selection (§2). We then show how to

specify priorities over QoS considerations, integrate priori-

ties with the QoS model, and explain the conversion of pri-

orities to weights (§3). Next, we describe our global prior-

ity constraint and its definition through outranking methods

(§4). We illustrate the use of the global priority constraint

(§5). We close the paper by reviewing related efforts (§6)

and summarizing our conclusions and directions for future

work (§7).

2. QoS Modeling

As we noted above, choice among competing services

(that is, services which can perform the same tasks) needs

to be guided by the services’ nonfunctional (i.e., quality)

characteristics, expressed in the form of QoS criteria and

constraints. We need a QoS model to show how priorities

can be accounted for in service selection. Among the vari-

ous QoS models (e.g., [3, 12, 13, 16, 35, 37]) we use herein

the UML QoS Framework [23]. It provides a metamodel

which is instantiated to obtain a QoS model. We do not go

into the detail of this metamodel for the available literature

already does this; instead, we only mention parts thereof

relevant for the present discussion. The mentioned parts

are relevant because the UML QoS Framework metamodel

does not accommodate priorities. We thus extend the meta-

model in a simple way later on in order to allow priorities.

Two parts of the metamodel relevant in such a setting are

the following:

• QoS Characteristic A QoS Characteristic is a descrip-

tion for some quality consideration, such as, e.g.: la-

tency, availability, reliability, capability. A character-

istic is quantified by means of specific parameters and

methods. These concepts are provided by the meta-

class QoS Parameter. Extensions and specializations

of such elements are available with the sub-parent self-

relation. A characteristic has the ability to be derived

into various other characteristics as suggested by the

templates-derivations self-relation.

• QoS Dimension A QoS Dimension specifies a mea-

sure that quantifies a QoS characteristic. The attribute

direction defines the direction (increasing, decreasing)

in which it is desired that the value of the QoS Di-

mension moves. Unit and statistical qualifier attributes

78

specify, respectively, the unit for the value dimension

and the type of the statistical qualifier; e.g.: maximum

value, minimum value, range, mean, frequency, distri-

bution, etc.

These two parts of the UML QoS metamodel are shown

in Figure 1, which also shows how the metamodel is ex-

tended to accommodate priorities. The attributes type and

parameters have been added to describe within-criterion in-

formation as explained in Subsection 4.1. The extension is

explained in the following section.

3. Priorities over QoS

3.1. Adding priorities to the UML QoS
framework metamodel

Given that we use the UML QoS Framework metamodel,

we can define priority orders over distinct QoS Character-

istics and over distinct QoS Dimensions. There is no in-

terest in defining mixed priority orders such as, e.g., pri-

ority between a QoS dimension and a QoS characteris-

tic. For two distinct QoS Dimensions di and dj , we write

di �d dj to express that improving the value of di is at

least as important as improving the value of dj . For two

distinct QoS Characteristics ci and cj , we write ci �c cj

and interpret it as follows: improving any of the quality di-

mensions defining ci is at least as important as improving

any of the quality dimensions defining cj . Both �d and

�c are transitive and strict priority is defined as usual (i.e.,

x ≻ y ≡ x � y ∧ ¬(y � x)).
If, for example we need to express in a service request

that it is strictly more important to optimize the security

QoS Characteristic than the performance QoS Characteris-

tic, we write the following: Security ≻c Performance.

To accommodate the priority orders between dimen-

sions and between characteristics, we extend the UML

QoS Framework metamodel with the following metaclasses

(shown in Figure 1):

• QoS Priority This class is used to express rules

that define priorities over characteristics or dimen-

sions. These rules determine the order in which dimen-

sions or characteristics are considered for improve-

ment/optimization when tradeoffs arise. A rule ex-

presses an order relation between elements. The blank

criteria attribute is used to express the relative impor-

tance of the priority as presented in Subsection 3.2.

• QoS DimPriority and QoS CharactPriority These

classes are specializations of QoS Priority for priori-

ties over, respectively, characteristics and dimensions.

-isInvariant

-type

-parameters

QoSCharacteristic

Template Parent

Derivations Sub*

*

*

1
QoSParameter

Type Parameter
1 *

-direction

-unit : string

-statistical qualifier

-type

-parameters

QoSDimension

Type
0..1

Typed*

DimensionOf
1

Quantifier 1..*
-rules

-blank criteria

QoSPriority

QoSCharactPriority

QoSDimPriority

Subject to

Subject to

0..1

0..1

*

*

ordinates

ordinates

Figure 1. Part of the UML QoS Framework

metamodel with priorities extensions in bold

3.2. Using weights to express priorities

Priorities as expressed above cannot be directly used in a

service selection method. To enable an autonomic process

given the priority orders, we need to associate weights with

each QoS Dimension or QoS Characteristic. To see how

weights can be associated to QoS Dimensions or Character-

istics, we need to answer how the weights are aggregated in

a service selection procedure. Two aggregation approaches

are available: the compensatory and the non-compensatory.

Compensatory approaches such as, e.g., the Analytic Hi-

erarchy Process (AHP) [29] used for e-business process

composition [30], present some disadvantages. Weights

which appear in compensatory approaches amount to be-

ing substitution rates, allowing differences in priorities as

they relate to different criteria (in the present terminology,

QoS Dimensions or Characteristics) to be expressed on the

same scale. They therefore do not characterize the intrinsic

relative importance of the attributes.

Non-compensatory approaches refer to weights simply

as a measure of the relative importance of the criteria in-

volved. Non-compensatory weighting can be compared to

the number of votes given to a candidate in a voting proce-

dure, with the final tally indicating the relative importance

of each criterion ’candidate’ [34]. Different methods of

criterion weighting exist, among them, those proposed by

Hokkanen and Salinen [8], Simos [31] or Mousseau [21].

In order to make a compromise between usability and ex-

pressiveness for specifying priorities over QoS Dimensions

and Characteristics, we choose to use an extended version

of the Simos weighting procedure described by Figueira and

Roy in [4].

In the original Simos procedure, criteria are put in the

order of importance that the decision-maker considers ap-

79

propriate. The decision-maker can also add ‘blank’ criteria

to reinforce rank differences. Criteria with the relative same

importance can be put on the same rank. The lowest order

rank is assigned to the number ’1’ and the decision-maker

then proceeds upwards. The rankings are increasingly un-

equal as more blank criteria are used. The revised procedure

introduces a new kind of information: the decision-maker

is asked how many times the last criterion is more impor-

tant than the first in the ranking. Moreover, drawbacks of

the subsets of ex aequo of the original Simos procedure are

eliminated and ameliorations processes the rounding off of

the numerical values in an optimal way. Information con-

cerning the number of blank criteria is specified in the QoS

Priority metaclass introduced in Subsection 3.1.

4. Using Outranking Methods to Define the

Global Priority Constraint

Instead of developing a particular service selection pro-

cedure which accommodates priorities between QoS Di-

mensions and Characteristics, we take a different approach:

we provide an extension to available selection approaches.

The extension enables the definition of a global priority con-

straint to be used as an ordinary constraint in the service

selection problem. We do not ask for a specific class of

service selection algorithms; any algorithm which proceeds

to select the optimal services and accounts for QoS Dimen-

sions and/or Characteristics can be used in conjunction with

the present proposal. This is for instance the case with the

reinforcement learning algorithm we suggested elsewhere

[11].

The purpose of the global priority constraint is to define

the relative priority of a set of QoS Dimensions (and thereby

Characteristics). Weights are assumed specified through

the improved Simos weighting procedure. Among the vari-

ous multi-criteria decision making methods, we choose out-

ranking methods to define the global priority constraint.

Outranking methods start from a set of alternatives (alterna-

tive selected individual services) and a set of criteria (QoS

Dimensions or QoS Characteristics), in order to evaluate al-

ternatives. The methods vary in the amount and kind of

additional information required; this additional information

may be, e.g., the decision-maker’s preferences (herein in-

terpreted as priorities), domain- and problem-specific infor-

mation, and so on.

An outranking relation is a binary relation S defined on

the set of potential choices A such that aiSaj if there is

enough information (i.e., arguments) to decide that ai is

at least as good a choice as aj , whereby there is no infor-

mation (i.e., counterarguments) that refutes that conclusion.

Common classes of outranking methods are ELECTRE and

PROMETHEE methods. The PROMETHEE method has

the advantage to consider explicitly information between

criteria and information within each criterion. Inter-criteria

information concerns mainly weights attributed to each cri-

terion (i.e., priority assigned to each QoS attribute).

4.1. Promethee

The PROMETHEE [1] class of outranking methods per-

forms pairwise comparisons of alternatives by considering

the deviation between the evaluations of the alternatives.

The more significant the deviation, the higher the prefer-

ence. We interpret the higher preference as higher priority

herein.

The result of the pairwise comparison for a criterion to

maximize is given by:

Pj(a, b) = Fj [dj(a, b)]∀a, b ∈ A (1)

where

dj(a, b) = gj(a)− gj(b) (2)

and for which

0 ≤ Pj(a, b) ≤ 1 (3)

Where:

• Pj(a, b) is the priority of the selection of some service

(choice a) over the selection of another service (choice

b) over the QoS Dimension j;

• dj(a, b) is the deviation between the choice a and

choice b over the QoS Dimension j;

• gj(a) is the score of the service a over the QoS Dimen-

sion j;

• Fj is the function giving the within-criterion informa-

tion associated to the QoS Dimension j.

The result of a pairwise comparison on a QoS Dimension

to minimize is such that:

Pj(a, b) = Fj [−dj(a, b)] (4)

Depending on the inherent characteristics of a given QoS

Dimension, the user of the approach can use one of six

kinds of functions for within-criterion information. These

are overviewed in details in [1, 34], each type necessitates

some particular parameters: type 1 is referred to as imme-

diate preference; type 2 introduces an indifference thresh-

old; type 3 increases continuously until this indifference

threshold; type 4 comprises an indifference and a preference

thresholds; type 5 increases continuously between indiffer-

ence and preference thresholds and; type 6 follows a Gaus-

sian law with a fixed standard deviation. These types and

their related parameters are specified with help of attributes

type and parameters of the QoS Dimension and QoS Char-

acteristic metaclasses introduced in Section 2.

80

In order to establish the ranking relation between alterna-

tives, we first need to define aggregated preference indices

and outranking flows.

• Aggregated preference indices

The aggregated preference indices are used to express

to what degree is the choice a preferred to the choice

b over all considered QoS Dimensions (π(a, b)) and

inversely, to what degree is the choice b preferred

to the choice a over all considered QoS Dimensions

(π(b, a)). Most of time, a will be of higher priority to

b for some QoS Dimensions and b will be of higher

priority to a for others. Thereof, π(a, b) and π(b, a)
are usually positive.

π(a, b) and π(b, a) are defined by:

{

π(a, b) =
∑k

j=1 Pj(a, b)wj

π(b, a) =
∑k

j=1 Pj(b, a)wj

(5)

where wj is the weight associated to the QoS Dimen-

sion j and k is the number of distinct QoS Dimensions.

The Promethee method can also be used with QoS

Characteristics, depending on the information avail-

able to the user.

• Outranking flows

The outranking flows determine how each choice a is

facing the n − 1 other possible choices in A. The

positive outranking flow (φ+(a)) expresses how an

alternative a is outranking all the others, the higher

its value, the better the alternative. The negative out-

ranking (φ−(a)) expresses how an alternative a is out-

ranked by n− 1 other alternatives. The lower its value

is, the better is the alternative.

φ+(a) and φ−(a) are defined by:

{

φ+(a) = 1
n−1

∑

x∈A π(a, x)

φ−(a) = 1
n−1

∑

x∈A π(x, a)
(6)

Once these outranking flows have been determined, sev-

eral ways of ranking are available. PROMETHEE I pro-

poses a partial ranking of alternatives authorizing equalities

over alternatives while PROMETHEE II provides a com-

plete ranking of alternatives. To define our global constraint

on available services, complete ranking offers more infor-

mation than partial one, so we choose to use PROMETHEE

II. The complete ranking of PROMETHEE II is defined by:

φ(a) = φ+(a)− φ−(a) (7)

4.2. Using Promethee to define the global
priority constraint

The PROMETHEE II method offers a complete rank-

ing over alternatives while considering multiple criteria

weighted according to their importance. Rather than se-

lecting the better service ranked with the help of the out-

ranking method, our aim is to fix a constraint applicable

to multiple QoS selection and composition models. This

way, different algorithms and optimization function may be

used together with the defined constraints (as in, e.g., [11]).

Classical approaches limit service selection by constraints

defined a priori without considering actual QoS values. A

such approach risks that constraints are satisfied or rejected

by all candidate services. The utilization of PROMETHEE

furnishes a ranking of services based on observed values of

QoS Dimensions. The result of this ranking can be repre-

sented on an oriented graph. Once this ranking is processed,

the constraint determine an acceptance level over this rank-

ing. For example, only the first x% of services ranked by

the promethee method may be selected as illustrated on ori-

ented graph in Figure 2.

Figure 2. Selection given a ranking

5. Practical Example

The first step is to determine which criteria will account

for the selection and represent them with the QoS meta-

model. Among all possibilities, we select five QoS Char-

acteristics that will induce our selection. These are: avail-

ability, latency, reliability, reputation and security. The next

step is to define priorities with help of the QoS metamodel

and to affect weights to define priorities. Small parts or our

instance of the metamodel are illustrated in Figure 3. Third,

we will define intra-criterion information and execute the al-

gorithm to establish the ranking. Finally, we will construct

the selection constraint on available alternative services.

Figure 3. Instantiation of the QoS metamodel

<< QoS CharactPriority >>

Rules : Availability Reliability

Blank criteria : 1
f

<< QoS Characteristic >> : Availability

type : 6

parameters : = 3s

<< QoS Characteristic >> : Reliability

type : 3

parameters : m = 8

Subject to Subject to

81

5.1. Determining Weights

To set weights, we need first to establish an order relation

on criteria and, eventually, introduce blank criteria adding

information about the relative importance between two suc-

cessive criteria. With the revised Simos procedure, we also

require to express z, the importance factor between the first

and the last criterion.

We choose to establish the following priority ordering:



















reputation ≻c security

security ≻c latency

latency =c availability

availability ≻c reliability

(8)

Recall that we defined the priority relation as transitive

earlier. Also, we shall for simplicity not go into the detail

of individual QoS Characteristics (we do not make explicit

how they are measured, that is, do not reveal the relevant

QoS Dimensions).

We add a blank criterion between the rank formed by

availability and latency and the rank of reputation to express

a more important difference than between other criteria as

illustrated in Figure 3. We give to z, the factor determining

how many times the last criterion is more important than the

first one in the ranking, the value 6. The Table 1 presents

the non normalized weights obtained with the procedure de-

scribed in [4].

Once we have obtained the non-normalized weights, we

need now to normalize them. The revised procedure uses a

new technique to normalize the weights while minimizing

the rounding off efforts. Computation results of normaliza-

tion are displayed in Table 2. Once weights are normalized,

we need to determine which ones will be rounded upwards

to have the sum of normalized weights equal to 100. To that

end, dysfunctions of relative error of rounding up (di) and

down (d̄i) are calculated.

We determine that criteria to be rounded up are relia-

bility and security while other criteria (availability, latency,

reputation) are rounded down. The last column of Table 2

give us final weights (ki) representing priorities of quality

attributes considered.

5.2. Constructing the Outranking Relation

To fix our outranking relation, we still need within-

criteria information. We must determine the type of each

criterion (here, QoS Characteristic) and their respective pa-

rameters. Types and parameters are specified with the QoS

metamodel as illustrated in Figure 3 for availability and reli-

ability characteristics. Our choices are presented in Table 3.

Optional parameters are added when required; l is the pref-

erence threshold; m is the strict preference threshold, and σ

determines the inflection point of the Gaussian criterion.

Table 4. Characteristics of available services

Provider Availability Latency Reliability Reputation Security

1 78 410 83 92 8

2 71 380 78 91 7

3 87 455 74 95 6

4 57 240 86 76 9

5 82 380 67 86 7

6 92 520 87 90 6

7 74 450 85 91 7

8 86 400 76 92 6

9 76 380 82 89 9

10 78 390 87 90 8

We can now execute the outranking method on services

supplied by 10 different providers. Their QoS are men-

tioned in Table 4.

With the performance of providers in Table 4, the intra-

criterion information resumed in Table 3 and the weights

available in Table 2, we can calculate positive and negative

outranking flows. Next, we can compute the complete rank-

ing; these are given in Table 5.

Table 5. Outranking flows

Provider φ+ φ− φ

1 53,09 32,46 20,63

2 38,12 47,92 -9,80

3 49,90 37,61 12,29

4 37,30 58,47 -21,17

5 35,40 65,05 -29,65

6 33,08 44,11 -11,03

7 28,95 37,10 -8,15

8 60,61 26,71 33,90

9 45,48 42,63 2,85

10 46,17 36,03 10,14

Figure 4. Ranking of available services

The flow result gives us the ranking of available services.

This ranking is illustrated on Figure 4.

5.3. Defining the Constraint

The aim of our model is to automatically provide a global

constraint usable with other algorithms or in composition

problems. This constraint is built from the ranking and im-

poses the selection of a service from the x first percent of

considered services. This way, it restricts the set of possible

alternatives by rejecting the least competitive services. In

82

Table 1. Non-normalized weights for z = 6

Rank r Criteria in the

rank r
Number of white

cards according to

rank r, e′
r

er Non-normalized

weights k(r)
Total

1 reliability 0 1 1.00 1.00 * 1 = 1.00

2 security 0 1 2.25 2.25 * 1 = 2.25

3 availability, la-

tency

1 2 3.50 3.50 * 2 = 7.00

4 reputation 6.00 6.00 * 1 = 6.00

sum 5 1 4 ... 16.25

Table 2. Determining the normalized weights of each criterion for w = 1 and z = 6

Rank Criteria Normalized

weights k∗
i

Normalized

weights k′′
i

Ratio di Ratio d̄i Normalized

weights ki

1 reliability 6.1538 6.1 0.00750755 0.00874256 6.2

2 security 13.8461 13.8 0.00389279 0.00332945 13.9

3 availability 21.5384 21.5 0.00241205 0.00150362 21.5

3 latency 21.5384 21.5 0.00241205 0.00150362 21.5

4 reputation 36.9230 36.9 0.00208542 0.00062291 36.9

sum 5 100 99.8 100

Table 3. Within criteria information

Criteria Unit Type Direction Parameter Parameter’s value

Availability % Criterion with Linear prefer-

ence

increasing m 8

Latency ms Quasi-Criterion decreasing l 45

Reliability % Gaussian Criterion increasing σ 3

Reputation % Criterion with Linear Prefer-

ence

increasing m 4

Security Level (1

to 10)

Usual Criterion increasing - -

83

this example, we choose to accept only the first 40% of ser-

vices outranked as illustrated in the box on Figure 4. This

global priority constraint admits only the best services in

accordance with our parameter choices.

6. Related Work

In this section, we review previous efforts related to

the service selection problem. We focus our selection ap-

proach on quality properties of web services that have been

widely introduced in the context of service-oriented com-

puting. O’Sullivan and colleagues [24] suggest a complete

description of nonfunctional properties of services and re-

view their use in discovery, substitution, composition and

management. They consider QoS to be constraints over the

functionality of a service. Menascé [20] considers quality

as a combination of several qualities and properties of a ser-

vice and discuss about evaluation of QoS measures from the

user’s and the provider’s perspectives.

Services selection is an emerging issue giving rise to var-

ious issues, from algorithms of selection to architectures

supporting QoS models allowing comparisons over alterna-

tives [25]. Tian and colleagues [32] outline an approach that

enables the selection of appropriate services based on QoS

requirements. To that purpose, they propose an architec-

ture in which services providers offer different classes of the

same service with different levels of QoS and price.Services

selection problem has been introduced in two areas of re-

search: the service selection issue and the selection of ser-

vices integrated in a services composition.

6.1. Service selection

We review here some of the most closely related efforts.

In contrast to our proposal, the approaches highlighted be-

low do not provide an explicit approach to accommodate

and compute priorities over QoS. Moreover, the aim of

these efforts is to select the best alternative from available

alternatives by fixing a priori constraints on QoS; they can-

not be combined with other available algorithms for service

selection. Liu, Ngu and Zeng [15] outline an approach that

establishes a QoS model to define non-functional proper-

ties. The model covers some generic QoS characteristics

and allows extension to other domain-specific quality crite-

ria. Once domain-specific QoS are fixed, a method is ap-

plied to establish a ranking of service alternatives. The web

service selection algorithm determines which service is se-

lected based on end user’s constraints. Available services

and their respective values on criteria are inserted in a ma-

trix. The matrix is then normalized in order to allow for a

uniform measurement of service qualities independently of

unit specifics. As different users have different QoS expec-

tations, the model then weighs QoS characteristics to estab-

lish the ranking. The normalization and the weighting of

their proposal lead to a compensatory approach that does

not characterize the intrinsic relative importance of crite-

ria involved. Maximilien and Singh [17] propose a multi-

agent system providing a dynamic and self-adjusting selec-

tion of services based on trust. This framework uses a se-

lection algorithm based on trust which does not authorize

to link weights and consequently, priorities. The trust of al-

ternatives is based on provider advertisement of particular

qualities and the consumer preferences for those qualities.

These qualities are normalized to enable their comparison

and aggregation into a single value. Tong and Zhang [33]

suggest a fuzzy multi attribute decision making algorithm

to solve the service selection problem. They account for

five weighted quality criteria for simple services. Quality

vectors are first normalized and best and worst services are

subsequently identified. Services closest to the best and far-

thest from the worst solution are selected. Contrary of our

approach, thei proposal is based on the best and worst so-

lution possible and is not adjusted to performance of exist-

ing alternatives. Casati and colleagues [2] outline a data-

mining approach to service selection. They analyze past

executions of services and build a set of context-sensitive

service selection models to be applied at each stage of ser-

vice execution. They account for use requirements in their

approach but they do not allow to link priorities over consid-

ered quality properties. Ghosh and colleagues [5] provide

an approach to QoS optimization that may be applicable to

service selection. QoS optimization is performed dynami-

cally and in real-time, whereby the problem is that of allo-

cating resources to specific tasks, and therefore similar to

the service selection problem. The user is asked to provide,

for each task, a utility function that maps each point in the

quality space (defined over QoS dimensions) to a real num-

ber called task utility. System utility, which is the sum of in-

dividual task utilities is maximized. Our approach relies on

multicriteria techniques and is somewhat simpler, because

we ask the user for less information by demanding priori-

ties instead of utility functions.

6.2. Service selection within service compo-
sition

Most approaches to service composition incorporate

some solution to the service selection problem. Service

composition consists of the identification of several ser-

vices, which together can perform some functionality that

none of the individual services can perform alone. In [35,

36] service composition and therefore selection are guided

by users’ utility functions over QoS dimensions. To select

the optimal service candidate, a simple additive weighting

technique is used to associate a weight to each criterion.

Jaeger, Mühl and Golze [9] highlight similarities to other

84

combinatorial problems as the knapsack problem and the re-

source constraint project scheduling problem. They discuss

about possible heuristics to solve the composition problem

and evaluate their efficiencies. A score is assigned to each

QoS criterion with a simple additive weighting technique

to express its respective importance. Approaches relying

on the simple additive weighting technique do not account

requester relative preference like the revised Simos proce-

dure used in our approach. In [7] a scalable QoS-aware

service aggregation model composing service on-demand

while satisfying the user’s quality requirements is proposed.

It selects services dynamically based on composite and dis-

tributed performance information. Each quality criterion

is associated to a weight. Grønmo and Jaeger proposes

in [6] a model-driven methodology for building web ser-

vices compositions that are QoS optimized. They present

a control flow pattern approach that optimizes the QoS val-

ues of the composition given user-defined requirements and

preferences. In [30] an approach to e-business process ne-

gotiation using a generic iterative bargaining protocol and

multi-criteria decision support is proposed. Alternative bids

are evaluated with the help of the analytic hierarchy process

(AHP) and absolute priorities weighting are used to express

preferences over QoS attributes. The AHP as a compen-

satory approach does not reflect the intrinsic relative im-

portance of the QoS property as good as the revised Simos

procedure.

7. Conclusions

Enabling autonomic computing through service-oriented

systems requires means for appropriately selecting at run-

time among potentially many services that can perform the

same tasks. It is otherwise impossible to ensure that only

those services are selected that are capable to satisfy re-

quests and honor service level agreements to the most de-

sirable extent. One of the key sources of difficulty in en-

abling efficient service selection lies in dealing with con-

flicting QoS expectations of the stakeholders.

We introduce an approach for dealing with trade offs be-

tween QoS criteria during runtime service selection. Our

approach is designed on the realistic premise that services’

performance over QoS criteria is changing, so that observed

values need to be used in decision-making, instead of as-

suming advertised QoS values are maintained indefinetly.

More precisely, we introduce a model to define quality at-

tributes and their respective characteristics. Because such

properties cannot be simultaneously optimized, we use the

notion of priority and integrate it in the model. We show

how to express priorities between QoS with the help of

weighting factors. In order to establish a ranking over al-

ternative services, we use outranking methods. Such meth-

ods generate a rating while considering relative importance

(weights) of the observed QoS dimensions. Our approach

is generic, that is, can be integrated with available QoS-

aware service selection and composition algorithms. To en-

able this integration, we show throughout the paper how our

approach allows the definition of a global priority constraint

to be subsequently used as an ordinary constraint in an opti-

mization problem (i.e., the service selection problem). The

constraint ensures that only part of the services be consid-

ered during selection and composition, rejecting thus au-

tomatically the noncompetitive services. The definition of

quality characteristics and their respective priorities allows

to perform an autonomic selection of “best” available ser-

vices.

In contrast to most comparable efforts, our QoS model

provides a framework applicable to various quality dimen-

sions and is therefore not limited to a set of predefined QoS

dimensions. Weights are determined by an algorithm con-

sidering user priorities and not predetermined rules. Out-

ranking methods allow us to rely on relative importance of

QoS dimensions. Moreover, the global priority constraint

that limits the set of relevant services at selection is built

from observed and not advertised values. It is therefore

more realistic, being appropriate for systems in which ad-

vertised QoS levels cannot be guaranteed at all times. Fu-

ture work will focus on facilitating, through appropriate

tools, the the identification and specification of priorities.

References

[1] J. Brans and P. Vincke. A preference ranking organization

method. Management Science, 31(6):647–656, 1985.

[2] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan. Prob-

abilistic, context-sensitive, and goal-oriented service. In IC-

SOC ’04: Proceedings of the 2nd international conference

on Service oriented computing, pages 316–321, New York,

NY, USA, 2004. ACM Press.

[3] A. D’Ambrogio. A model-driven wsdl extension for describ-

ing the qos ofweb services. In ICWS ’06: Proceedings of the

IEEE International Conference on Web Services (ICWS’06),

pages 789–796, Washington, DC, USA, 2006. IEEE Com-

puter Society.

[4] J. Figueira and B. Roy. Determining the weights of criteria

in the electre type methods with a revised simos’ procedure.

European Journal of Operational Research, 127(2):317–

326, June 2002.

[5] S. Ghosh, J. Hansen, R. Rajkumar, and J. Lehoczky. Adap-

tive qos optimizations for radar tracking. In RTCSA’04: Pro-

ceedings of the 10th International Conference on Real-Time

and Embedded Computing Systems, 2004.

[6] R. Grønmo and M. C. Jaeger. Model-Driven Methodology

for Building QoS-Optimised Web Service Compositions. In

L. Kutvonen and N. Alonistioti, editors, Distributed Appli-

cations and Interoperable Systems: 5th IFIP WG 6.1 In-

ternational Conference (DAIS’05), volume 3543 of LNCS,

pages 68–82, Athens, Greece, May 2005. Springer Verlag.

85

[7] X. Gu and K. Nahrstedt. A scalable qos-aware service ag-

gregation model for peer-to-peer computing grids. In In Pro-

ceedings of the IEEE HPDC-11, Edinburgh, Scotland, 2002.
[8] J. Hokkanen and P. Salminen. The choice of a solid waste

management system by using the electre iii decision-aid

method. In M. Paruccini, editor, Applying multiple criteria

aid for decision to environmental management, volume 3 of

Environmental Management, pages 111–153. Kluwer Aca-

demic Publishers, Dordrecht, 1994.
[9] M. C. Jaeger, G. Mühl, and S. Golze. Qos-aware composi-

tion of web services: An evaluation of selection algorithms.

In OTM Conferences (1), pages 646–661, 2005.
[10] I. J. Jureta, S. Faulkner, Y. Achbany, and M. Saerens. Dy-

namic task allocation wihin an open service-oriented mas

architecture. In Proceedings of the 6th International Joint

Conference on Autonomous Agents and Multi-Agents Sys-

tems (AAMAS’07), 2007.
[11] I. J. Jureta, S. Faulkner, Y. Achbany, and M. Saerens. Dy-

namic web service composition within a service-oriented ar-

chitecture. In Proceedings of the International Conference

on Web Services (ICWS’07), 2007.
[12] I. J. Jureta, C. Herssens, and S. Faulkner. A comprehen-

sive quality model for service-oriented systems. In Software

Quality Journal. Accepted for publication (available online

at: http://www.jureta.net/papers/QVDPdraft.pdf).
[13] A. Keller and H. Ludwig. The wsla framework: Specifying

and monitoring service level agreements for web services. J.

Netw. Syst. Manage., 11(1):57–81, 2003.
[14] J. O. Kephart and D. M. Chess. The vision of autonomic

computing. IEEE Computer, 36(1):41–50, 2003.
[15] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and

policing in dynamic web service selection. In WWW Alt.

’04: Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters, pages 66–

73, New York, NY, USA, 2004. ACM Press.
[16] M. E. Maximilien and M. P. Singh. Toward autonomic web

services trust and selection. In ICSOC ’04: Proceedings of

the 2nd international conference on Service oriented com-

puting, pages 212–221, New York, NY, USA, 2004. ACM

Press.
[17] M. E. Maximilien and M. P. Singh. Multiagent system for

dynamic web services selection. In Proceedings of the Inter-

national conference on Autonomous Agents and Multi-Agent

Systems, 2005.
[18] S. McIlraith and T. C. Son. Adapting golog for composition

of semantic web services. In Proceedings of the Interna-

tional Conference on Principles of Knowledge Representa-

tion and Reasoning (KR’02), 2002.
[19] S. A. Mcilraith and D. L. Martin. Bringing semantics to web

services. IEEE Intelligent Systems, 18(1):90–93, 2003.
[20] D. A. Menascé. Qos issues in web services. IEEE Internet

Computing, 6(6):72–75, 2002.
[21] V. Mousseau. Eliciting information concerning the relative

importance of criteria. In P. Pardalos, Y. Siskos, and C. Zo-

pounidis, editors, Advances in Multicriteria Analysis, pages

17–43. Kluwer Academic, Dordrecht, 1995.
[22] S. Narayanan and S. A. McIlraith. Simulation, verification

and automated composition of web services. In Proceed-

ings of the International Conference on the World Wide Web

(WWW 2002), 2002.

[23] OMG. Uml profile for modeling qos and fault tolerance

characteristics and mechanisms. Technical report, Object

Management Group, 2006.

[24] J. O’Sullivan, D. Edmond, and A. T. Hofstede. What’s in a

service? towards accurate description of non-functional ser-

vice properties. Distrib. Parallel Databases, 12(2-3):117–

133, 2002.

[25] A. Padovitz, S. Krishnaswamy, and S. W. Loke. Towards ef-

ficient selection of web services. In Proceedings of the Sec-

ond International Joint Conferences on Autonomous Agents

and Multi-agent Systems, 2003.

[26] M. P. Papazoglou and D. Georgakopoulos. Introduction.

Commun. ACM, 46(10):24–28, 2003.

[27] M. Pistore, P. Traverso, and P. Bertoli. Automated composi-

tion of web services by planning in asynchronous domains.

In S. Biundo, K. L. Myers, and K. Rajan, editors, ICAPS,

pages 2–11. AAAI, 2005.

[28] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Au-

tomated synthesis of composite bpel4ws web services. In

ICWS, pages 293–301. IEEE Computer Society, 2005.

[29] T. Saaty. The Analytic Hierarchy Process, Planning, Pior-

ity Setting, Resource Allocation. McGraw-Hill, New york,

1980.

[30] S. E. Shaikh and N. Mehandjiev. Multi-attribute negotiation

in e-business process composition. In WETICE ’04: Pro-

ceedings of the 13th IEEE International Workshops on En-

abling Technologies: Infrastructure for Collaborative En-

terprises (WETICE’04), pages 141–146, Washington, DC,

USA, 2004. IEEE Computer Society.

[31] J. Simos. Gestion des Déchets Solides Urbains Genevois :

Les Faits, le Traitement, l’Analyse. Presses Polytechniques

et Universitaires Romandes, Lausanne, 1990.

[32] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and

J. Schiller. A concept for qos integration in web services.

In Proceedings of the 1st Web Services Quality Workshop

(WQW2003), 2003.

[33] H. Tong and S. Zhang. A fuzzy multi-attribute decision mak-

ing algorithm for web services selection based on qos. In

IEEE Asia-Pacific Conference on Services Computing (AP-

SCC’06), volume 0, pages 51–57, Los Alamitos, CA, USA,

2006. IEEE Computer Society.

[34] P. Vincke. Multicriteria Decision-Aid. J. Wiley, New York,

1992.

[35] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and

Q. Z. Sheng. Quality driven web services composition. In

WWW ’03: Proceedings of the 12th international conference

on World Wide Web, pages 411–421, New York, NY, USA,

2003. ACM Press.

[36] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,

J. Kalagnanam, and H. Chang. Qos-aware middleware

for web services composition. IEEE Trans. Softw. Eng.,

30(5):311–327, 2004.

[37] C. Zhou, L.-T. Chia, and B.-S. Lee. Daml-qos ontology for

web services. In ICWS ’04: Proceedings of the IEEE Inter-

national Conference on Web Services (ICWS’04), page 472,

Washington, DC, USA, 2004. IEEE Computer Society.

86

