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Abstract— A pluripotent information system is an open and
distributed information system that (i) automatically adapts
at runtime to changing operating conditions, and (ii) satisfies
both the requirements anticipated at development time, and
those unanticipated before but relevant at runtime. Engineering
pluripotency into an information system therefore responds to
two recurring critical issues: (i) the need for adaptability given
the uncertainty in a system’s operating environment, and (ii)
the difficulty to fully anticipate and account for all possible
stakeholders’ requirements at development time and respond to
the change of requirements at runtime. We draw on our group’s
research efforts over the last two years to show and discuss how
pluripotency can be engineered into information systems.

I. INTRODUCTION

The term “pluripotency” in biology describes the potential
of a cell to develop into different cell types depending on
the environment. In line with this use we carry over the term
to information systems engineering to designate a class of
information systems (IS) that have two distinguishing traits:

1) Adaptability to the variability of modules. A pluripo-
tent IS satisfies stakeholders’ requests by selecting and
coordinating the execution of self-contained modular
applications (be they services as in service-oriented
computing, or agents as in agent-oriented software en-
gineering). The modular applications, i.e., modules, are
selected from a pool which is not stable throughout
system runtime: modules can be made available and
become unavailable, modules’ providers can upgrade or
replace them entirely, and new providers can make their
modules available at system runtime. The engineer of the
pluripotent IS therefore does not know at development
time the characteristics of all modules that may be
involved in the IS at runtime. She engineers the IS so that
it adapts to the variying availability and unanticipated
characteristics of the modules.

2) Adaptability to the variability of requirements. Just as
a pluripotent cell can develop into different cell types,
and is thereby capable of serving different purposes
within a living organism, a pluripotent IS can select
and coordinate various sets of modules to satisfy dif-
ferent stakeholders’ requirements. This results from the
system’s ability to operate with various modules (each
performing some delimited function) and to combine
them in various ways depending on the specifics of
stakeholders’ requests at runtime. Rarely, if never is the
pluripotent IS made with one specific application area

in mind. Instead, pluripotent IS are particularly relevant
when wide ranging sets of requirements need to be
satisfied, when the engineers are unsure of what precise
requirments the stakeholders will have throughout the
system lifecycle, and when the engineers themselves are
not developing the various modules but rely on external
providers.

The infrastructure for developing and deploying pluripotent
systems is available, though there is at present no fully
functioning or commercially available pluripotent IS. This is
due to two issues, which we revisit further below: (i) lack of
agreement on standards which would ensure interoperability
between modules; (ii) definition and testing of the mechanisms
which enable the system to select the best possible sets of
modules to satisfy to the most desirable extent stakeholders’
requirements. Over the last two years our efforts focused on
identifying and proposing solutions to the second issue. We
have already presented various results in a fragmented manner
and to different communities [1], [2], [3], [4], [5], [6], [7].
The purpose of this paper is to overview available results,
place them within a single framework, outline open issues,
and motivate further research. It is directed at the information
systems engineering community for we see it as an appropriate
setting in which to discuss and evaluate these efforts in their
full scope.

a) Organization.: We start by outlining the main motives
and trends in research and industry that led us to work on the
engineering of pluripotent IS (§II). We then define the problem
that needs to be resolved if pluripotent IS are to be relevant in
industry (§III). We review our solutions to parts of the problem
(§IV and §V). We close the paper by discussing the lessons
learned over the last two years, summarize the conclusions,
and point to directions for future effort (§VI).

II. MOTIVATION

It is well known that the engineering and management of
increasingly complex IS is a key challenge in computing (e.g.,
[8], [9]). Relevant responses in research and industry involve
a move towards systems’ increased modularity, openness,
distribution, and interoperability. Among the various, often
overlapping approaches to building such systems, service-
orientation and agent-orientation stand out in terms of accu-
mulated experience and advances in research, availability of
standards for describing and enabling the interaction between
modules (be they services or agents), and uptake in industry.



Any pluripotent IS relies on a modular, open, and distributed
architecture, be it service- or agent-oriented. Pluripotent IS
engineering relies on available results on enabling modularity,
openness, distribution and interoperability, and is not per se
concerned on advancing these matters.

Overall, a pluripotent IS involves three basic constituents,
namely, requests, composers, and modules. The system op-
erates as follows.1 In a pluripotent IS a request represents
stakeholders’ requirements in an unambiguous and machine-
understandable format. Requests are created at runtime: stake-
holders express requirements, which are then translated into
requests. Each request is submitted to an automated composer
in the IS, which then selects the individual modules whose co-
ordinated execution fulfills best the requirements represented
by the request. In selecting among different and/or competing
modules2, the composer matches stakeholders’ requirements
to systems’ capabilities. The engineering of the composer is
in such a context difficult for two reasons discussed in turn
below.

A. Variability of Modules

We have noted earlier that openness is a characteristic
of any pluripotent IS. By openness, we mean that some
module provider that has not registered its modules with the
pluripotent IS during its development can still make these
modules avalable ‘in’ the pluripotent IS. Modules whose char-
acteristics are unknown at development time of the pluripotent
IS can therefore become involved in the pluripotent IS and
be considered for selection by composers. In other words,
the pool of potential modules varies and individual modules’
actual properties (i.e., what function it performs, and how
well it performs it) are unknown to the composers before the
said modules become available at runtime. Having a composer
that can operate with initially unknown modules is of evident
interest in terms of maintaining and evolving an IS. To make a
composer receptive to new modules, ensuring interoperability
and choosing appropriate behavior for the composer are both
critical. If interoperability is ensured, it will be possible for
the composer to detect what function a module offers and
how well it performs the function. Ensuring interoperability
remained mostly outside the scope of our efforts—the reader
is referred to literature on the Semantic Web, which is directly
relevant for pluripotent IS whose modules are web services.
We have mostly been concerned with defining appropriate
behavioral mechanisms for composers, while simplifying by
assuming interoperability. In other words, the issue we have
been and remain interested in is what (class of) algorithms
can be used to enable composers to select modules whose
coordinated execution satisfies to the most desirable extent
stakeholders’ requirements laid out in a request, given that
at any time a different pool of modules is available. We

1Details of the architecture that can enable the operation of pluripotent
IS are given elsewhere, both for service-oriented computing [3] and agent-
oriented computing [2].

2Different modules perform different functions. Competing modules all
perform the same function, though at different quality levels.

present the salient characteristics of one such algorithm in the
remainder of the paper.

B. Variability of Requirements

Requirements engineering consists of describing the stimuli
that the future system may encounter in its operating en-
vironment and defining the system’s responses according to
the stakeholders’ requirements. The more potential stimuli are
anticipated and accounted for during development, the less
likely a discrepancy between the expected and the observed
behavior and quality of the system. Hence a longstanding
concern in RE on requirements completeness (e.g., [10], [11]):
i.e., ensuring that the requirements specification accounts
for all the relevant stakeholder requirements and environ-
ment properties and behaviors. Perfect completeness is rarely
claimed in practice. Stakeholders learn as they participate in
the system development project and revise their requirements,
which they continue doing while using the deployed system
and thereby revise expectations depending on the interac-
tions with the system. Revised requirements may then lead
to the reengineering of the system so as to accommodate
new requirements. Requirements are often well known for
IS focused on very specific tasks and used in industry, and
their variability is manageable through periodic change of the
relevant systems. Requirements tend to be considerably less
clear and stable in consumer-oriented IS, such as, e.g., photo
and video sharing applications, and office productivity suites.
They are usually anticipated and/or identified in a reverse
manner (i.e., technology allows new functionality, so that the
functionality is provided independently of being requested by
the users). That individuals’ goals and preferences are variable
has long been recognized in particular in research on decision
making and marketing. Once one acknowledges that require-
ments are likely to vary instead of remaining stable, it becomes
apparent that the ideal approach is to engineer a system that
places very few bounds on the content of requirements that
stakeholders can submit to it. Given modularity, openness, and
interoperability, it becomes relevant to enable an IS during
development to accommodate various functionality through
modules and requests for functionality from stakeholders.
Engineering pluripotency into an IS allows the engineer to
ensure that the system responds to one main requirement,
which is to be able to respond to various requirements of the
stakeholders instead of limiting the system to a restricted set
of requirements identified at development time. Pluripotent IS
are thus an alternative to available solutions to requirements
variability, with the advantage of being conceptualized to
primarily address requirements variability. The very notion of
pluripotency, that is, the possibility to develop in various ways
so as to satisfy various purposes, therefore fits well the present
discussion.

C. Industrial Relevance of Pluripotent IS

Benefits of increased modularity, openness, distribution,
and interoperability are recognized in industry, among other
through adoption of service-oriented architectures for IS [12].



Experiences with service implementations (e.g., [13], [14])
indicate that service-orientation does facilitate application in-
tegration. Experiences in the German banking sector show that
facilitated integration opens new possibilities in how banking
is done [13]:

“To decrease costs and simultaneously enhance cus-
tomer utility, banks are increasingly focusing on
their individual core capabilities while exploring
different sourcing options for non-core capabilities.
Consequently, they are disaggregating their value
chain into independently operable functional units.
As communication capabilities reach higher levels
of performance and reliability, these functional units
are combined across corporate borders, thereby in-
creasing sourcing options and flexibility.”

Independent functional units can therefore perform their
function both for their owner organization and outside firms
whish require the given functionality (e.g., [15]). Broadly
speaking, such units are called services within the services per-
spective. Herein we call them modules since we have worked
on both services and agents as enablers of pluripotent IS
elsewhere [2], [3]. While modules can evidently be much less
elaborate than entire organizational units (as fully automated
web services usually are), the same broad principles apply:
both are self-describing and self-contained units designed to
execute a well-delimited task, and have standardized interfaces
to the outside environment. It is not difficult to picture
an efficient approach given increased modularity, openness,
distribution, and interoperability, e.g., to loan provision. First,
the loan institution would use separate services for each of the
various activities involved in loan provision (e.g., information
gathering and assembly, credit analysis, application evaluation,
risk evaluation, customer service, customer administration,
refinancing, etc.). Second, there would be competing modules
for each of the tasks, so that the loan institution can choose
for each task the module which suits it best. Third, as new
modules become available, the loan institution would revise
the composition of its value chain, using new modules instead
of those previously employed. Ideally, the process of selecting
and coordinating the modules would be automated, so that the
loan institution continually uses only modules that “best” fit
its requirements in terms of, e.g., efficiency, privacy, security,
and of the intended offering to customers who apply for loans.

While loans cannot be provided in the described manner
at the time of writing, the interest in doing so is apparent:
(a) individual modules may achieve economies of scale by
working for more than one loan institution; (b) the loan
institution may benefit from the focus (i.e., specialization)
of individual modules (that is, their providers) on their re-
spective tasks; (c) the loan institution may economize on
switching costs due to interoperability. Furthermore, if the
module selection process is automated, the loan institution
may further economize on (d) human costs, for it will not
invest resources in manually selecting appropriate modules,
and (e) time needed to identify and switch to better modules.

If we abstract from the hypothesized loan provision example,
realizing the efficiencies (a)–(e) requires solving the following
problem:

Given a large number of competing, interoperable
modules which describe their offerings using stan-
dardized and machine-understandable notations:

1) How do we express the requirements that need
to be satisfied through the use of some of these
modules?

2) How do we use the given requirements to
automatically select at all times the modules
that can best satisfy the said expectations?

The first question above is directly related to the earlier
discussion of requirements variability (§II-B), whereas the
second issue relates to the problem of selecting appropriate
modules given variable module availability and the possibility
for new modules to become available (§II-A).

In summary, pluripotent IS arise from the new possibilities
offered by increasing modularity, openness, distribution, and
interoperability, either through service- or agent-orientation.
We argue below that pluripotent IS are a solution to a partic-
ular subclass of the service composition problem in service-
oriented computing, or the task allocation problem in agent-
oriented computing.

III. COMPOSITION PROBLEM IN PLURIPOTENT IS
One way in which the satisfaction of a request submitted to

a pluripotent IS proceeds is shown in Figure 1. An arbitrary3

idle composer in the pluripotent IS receives a request (see,
plate a in Figure 1), described in terms of functional (drawn
as a process in this example) and quality requirements (b). The
composer interprets the request, identifies modules appropriate
w.r.t. functional and quality requirements (c), allocates mod-
ules to tasks in the process, and coordinates the execution of
these modules (d). As new modules appear (e), the composer
continues to execute the same composition (f) which gives
a certain level of success (g), whereby the success rate
designates the proportion of request executions which satisfy
all requirements laid out in the request. In parallel, a duplicate
composer explores new compositions by randomly choosing
new modules among those that appeared (h), and allocates
them to appropriate tasks in the process (i). New composition
that gives a higher success rate is then used instead of the
old composition (j). Illustrative success rate data in Figure 1
comes from experiments we presented elsewhere [2], [3].

The described procedure is not unlike that of service com-
position in service-oriented computing or task allocation in
agent-oriented computing. Above, we assume that the process
to execute and the quality considerations are given in the
request. We used these assumptions elsewhere [2], [3] to
focus on the problem of how the composer ought to revise
prior compositions to account for new modules appearing and

3The architecture we used more elaborate than described herein. Namely,
we do not allocate requests always to arbitrary composers, but have specialized
composers for requests that arrive above some threshold frequency. We do not
discuss this further here; the interested reader is referred to [2].



other modules becoming unavailable. Given that the problem
is similar to that of service composition, we now consider
whether alternative approaches may be relevant for enabling
pluripotent IS.

Looking at alternative approaches to composition, we ob-
serve that the choice of assumptions about the characteristics
of the IS and of the requests influence the solution to the
composition problem as follows:
• Are only functional (A) or both functional and non-

functional (B) criteria used in selecting modules for the
composition? When selecting relevant modules from the
pool of available modules, the composer first needs to
identify those modules that can perform the needed func-
tionality. If only functional criteria are used (A), there is
no apparent way of comparing competing modules which
can all perform the same functionality (e.g., [16]). To add
nonfunctional criteria (B), it is necessary to assume a QoS
ontology for modules (e.g., [17]), which the providers
use to advertise modules’ nonfunctional characteristics,
and over which the composer can compare alternative
modules.

• Is the process to execute known (C) or not (D) in the
request? If unknown, a description of the goal state is
usually given. From there on, planning can be applied to
identify, given a set of modules whose functionality is
known, the sequence of modules whose execution leads
to the goal state. If the process is known, the compositon
problem amounts to allocating the tasks to modules that
can execute the given tasks.

• Does the composer rely on advertised (E) or observed
(F) values of nonfunctional characteristics of individ-
ual modules? When several modules provide the same
functionality, the composer compares the modules based
on their nonfunctional characteristics. Service providers
advertise the values for their modules’ nonfunctional
characteristics. If the composer rates the modules based
on advertised values (E), it is assumed that the modules
attain advertised performance levels in all executions.
Otherwise, the composer compares modules based on
observed performance in prior compositions (F), conse-
quently accounting for discrepancies between advertised
and actual behavior.

• Does the composer revise compositions as new modules
become available? No revision (G) implies that each
composition is optimal, and thus that there can not
be new modules that perform better than those already
available. If compositions are revised (H), the composer
may proceed to replan the composition to explore new
compositions based on newly available modules.

• Is the set of all functional and nonfunctional character-
istics for modules known regardless of what modules are
available? If yes (I), any new module appearing in the
system necessarily performs some functionality that is
known, and over which the users can express require-
ments. Same applies for nonfunctional characteristics—
all are known in advance, so that any new module

advertises its nonfunctional characteristics over those
already known. On the Semantic Web, this is equivalent
to say that the ontologies of functional and nonfunctional
characteristics are known in advance. This is somewhat
unrealistic, for it would imply that no module provider
can offer new functionality through its modules. If un-
known (J), users need to be informed of new functionality
that becomes available as new modules appear: ontologies
are not entirely predefined, but need to be updated at
runtime.

Prominent results in module composition rely on the Golog
[18] logic programming language. Starting from generic
process descriptions and user preferences, compositions are
planned to satisfy preferences [19], [20], [21]. In this respect,
they rely on functional criteria in selecting modules (A),
plan compositions from goals and preferences (D)4, rely on
advetised functional characteristics (E), and either do not
consider the revision problem, or when they do (H), the
composition is replanned [22], [23]. The functional ontology
is assumed predefined for the problem of new functionalities
is not addressed (I). Another noted approach [24], [25], [26]
combines the features (A, D, E, G, I); assuming that individual
modules are described as stateful processes with BPEL4WS
[27], a goal state is partially specified in temporal logic, a
plan that satisfies the goal is synthesized through planning via
symbolic model checking, and the plan is translated back into
BPEL4WS so that it can be submitted for execution. For other
related efforts, the reader is referred to discussions in the rel-
evant literature (in particular, see, [24], [21], [3]). Within this
literature, we studied automated composition under the feature
set (B, C, F, H, I) and proposed a novel reinforcement learning
algorithm which allows us to account for both functional and
nonfunctional considerations when allocating modules to tasks
given in a process model. The algorithm takes nonfunctional
criteria to optimize, a process model, a set of hard constraints
on nonfunctional characteristics of modules, then learns the
optimal allocation of modules to process steps (i.e., creates
a composition), and continually explores allocations of newly
available modules to process steps (thus revising compositions
as new modules appear). The approach that we advocated
suffers in that it requires a defined process model. In contrast
then to the mentioned notable composition approaches, we
achieved advanced adaptability and quality-orientation (by
allowing nonfunctional criteria to be taken into account during
composition), but lacked where these approaches are strongest:
in plan synthesis based on functional requirements.

To enable pluripotent IS, our long term aim is to enable
composition that bears the feature set (B, D, F, H, J). First,
we can take both functional and nonfunctional requirements
as module selection criteria (B), so that we can account for
quality of service considerations in the system. Second, very
few assumptions need be made as to the expertise of the
users specifying the request, so that no predefined process

4Though some generic procedure for how to achieve the goal is usually
given—see, e.g., [21].
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Fig. 1. An illustration of composition in pluripotent IS.

need be assumed (D). Third, uncertainty makes it difficult to
assume that modules perform as advertised—it is better to base
subsequent compositions on the observed prior performance
of modules rather than their advertised performances (F).
Fourth, compositions are continually revised so that users
always obtain optimal solutions to their requests (H). Finally,
we assume that ontologies of functional and nonfunctional
characteristics are only partly known, and need to be revised
as modules with new characteristics appear (J). Intuitively,
this is a particularly attractive aim, which fits well the loan
problem we outlined earlier. The loan institution would be able
to specify requests rich in functional and nonfunctional criteria
for composition; it would not need to specify the detailed
process to execute, leaving it instead to its internal or external
modules and the composer to plan; inside or outside partners
would be selected (and compensated) based on observed and
not advertised behavior; the set of involved parties would
be constantly revised for optimal results; finally, the loan
institution remains open to novel approaches to providing and
managing loans.

The (B, D, F, H, J) combination of features leads to the
following formulation of the research problem that is to be
resolved if pluripotent IS are to be of interest in industry:
The pluripotent IS problem.
Given:
• a set W(t) of modules available at time t.
• a set W∞ of all possible modules. At time t, we know

only the distinct modules from W∞ that have been
available up to t.

• a set C(t) of composers available at time t.
• a set R(t) of requests submitted to composers at time t.
• a cumulative task domain ontology OT(t̄) that defines

functionalities offered by all modules that have been
available up to and including time t (hence, ‘cumulative’).
We call individual functionalities ‘tasks’. t̄ is a sequence
ending with, and including t.

• a full task ontology OT
∞ of all possible tasks that modules

can offer. At any time t, we only know the part OT(t̄)
of OT

∞.
• a task advertising function MT : W∞ −→ ℘ÖT

∞ which
is a total function mapping each individual module to
one or more tasks that the given module can execute. We
use ÖT

∞ to denote the set of all distinct entities extracted
from the ontology OT

∞.
• a cumulative quality domain ontology OQ(t̄) that defines

nonfunctional characteristics of all modules that have
been available up to and including time t. We call
individual nonfunctional characteristics qualities.

• a full quality ontology OQ
∞ of all possible qualities that

can characterize all possible modules. At any time t, we
only know the part OQ(t̄) of OQ

∞.
• a quality advertising function MQ : W∞ −→ ℘ÖQ

∞
which is a total function mapping individual modules



to sets of qualities from the cumulative nonfunctional
domain ontology. We use ÖQ

∞ to denote the set of all
distinct entities extracted from the ontology OQ(t̄).

such that:
• for each module w ∈ W(t), functional MT(w) (i.e.,

tasks) and quality characteristicsMQ(w) are advertised.
• each request r ∈ R(t), r ≡ 〈rT, rQ, rO〉, defines

constraints rT on tasks from OT(t̄), constraints rQ on
qualities from OQ(t̄), and identifies the qualities rO from
OQ(t̄) to optimize.

• the cumulative task domain ontology is updated at each
time period t to include tasks that are advertised for all
W(t).

• the cumulative quality domain ontology is updated at each
t to include all qualities that are advertised for all W(t).

Find:
1) a procedure to elicit and specify functional and nonfunc-

tional requirements.
2) a procedure to transform requirements into requests, i.e.,

to obtain rT, rQ, and rO for each request r ∈ R(t).
3) a procedure to update the specification of requirements

to inform the users of the extent to which their prior
requests have been satisfied and of the new requirements
that the pluripotent IS can satisfy.

4) a procedure P , which given any particular request r,
returns a sequence of tasks P(r) to execute in order to
satisfy rT.

5) a procedure A, which given P(r) and the available
modules W(t), returns an allocation A(P(r), W(t)). The
allocation indicates which module in W(t) is to execute
what task in P(r) in order to satisfy rQ and optimize
rO.

6) a procedure R which, at some subsequent time t′,
W(t′) 6= W(t), explores alternative allocations and
returns A(P(r), W(t′)) which optimizes rO.

Issues 1–3 are problems of requirements engineering, that
is, concern the elicitation, specification, and analysis of re-
quirements. Issue 2 concerns mainly the relationship between
requirements and capabilities that realize them—one way to
look at this is through traces that can be established between
requirements and system behaviors. Concerns 4–6 are prob-
lems of planning. Allowed expressivity of requirements affects
the choice of the planning approach relevant for issues 4–6;
that is, solutions to the various issues are intertwined for the
choices in one affect the choices that can be made in resolving
others. We discuss in the remainder our contributions to the
resolution of the above problem.

IV. ENGINEERING REQUIREMENTS FOR PLURIPOTENT IS

There are no requirements engineering (RE) methodologies
specific to pluripotent IS. In such a setting, we have studied
whether pluripotency places sufficient difficulties on estab-
lished RE methodologies to warrant a departure from accepted
approaches. Any established RE methodology, such as, e.g.,

KAOS [28] and Tropos [29] would start with early and late
requirements analyses to better understand the organizational
setting, where dependencies between the module providers and
end users would be identified, along with the goals, resources,
and tasks of these various parties. Architectural design would
ensue to define the sub-systems and their interconnections
in terms of data, control, and other dependencies. Finally,
detailed design would result in an extensive behavioral specifi-
cation of all system components. While other methodologies,
such as KAOS [28] involve a somewhat different approach,
all move from high-level requirements into detailed behav-
ioral specifications. This established approach is limited for
pluripotent IS for several reasons. First, openness to new
modules guarantees that the requirements engineer does not
know all potential behaviors during the RE phase of the system
development process. The problem defined earlier states that
only the cumulative task ontology OT(t̄) (instead of the full)
is known, so that the capabilities of the system cannot be
fully understood nor documented before deployment. Detailed
design is thus limited to the design of composers, not in-
dividual modules. Second, it cannot be reasonably expected
for all modules to be always available nor their quality of
service to be perfectly stable. Setting precise levels at which
quality metrics need to be satisfied and doing this before
deployment is therefore unrealistic. Moreover, new modules
may carry quality metrics that have not been encountered
with modules previously used at runtime. Indeed, only the
cumulative ontology OQ(t̄) of nonfunctional characteristics is
known at any given time. Overall, applying the established
RE process to pluripotent IS can be problematic if it fixes
too strongly the requirements at the outset, thus making it
impossible for composers to consider new modules at runtime.

One response which benefits from the established advances
in RE, yet accommodates the variability in how (in terms
of tasks) and how well (in terms of quality) requirements
are satisfied, lies in knowing to which extent (i.e., to what
level of detail) to specify requirments for a pluripotent IS
during development, and then to update the requirements
specification at runtime to reflect the actual behavior of the
system. The requirements specification thus becomes ‘dy-
namic’ in that it is continually updated at runtime. Another
approach is to explore entirely new processes for the RE of
pluripotent IS. We have studied the first approach and defined
a semi-automatic algorithm used to update a requirements
specification produced using an established RE methodology,
such as Tropos or KAOS. The algorithm builds defeasible
traces between fragments of a requirements specification and
fragments of requests. The traces can be seen as mappings
between the statement of stakeholders’ requirements and the
machine-understandable format of these same requirements
(i.e., their corresponding specification in a request). Given a
requirement fragment, the algorithm provides guidelines on
manually converting the said requirement into a fragment of
the request, depending on the content of the requirements
fragment (i.e., whether it is a functional or nonfunctional



requirement, a preference, or a priority) and of the available
cumulative task and quality ontologies. The conversion gives
rise to a defeasible trace between the requirement fragment
and the request fragment. The trace is recorded in a repository
and its consistency is checked against already available traces.
Once recorded, each particular trace performs two functions:
(i) given a requirement fragment that corresponds to the trace
at any point of runtime, the trace is used to automatically gen-
erate the corresponding request fragment, thus helping to write
requests from requirements; (ii) when a new module becomes
available, described in the same language in which the requests
are written, the trace is used to convert the module description
into requirements, and therefore advertise new capabilities in a
more convenient format to the users. The algorithm thus allows
users to learn about newly available functionality as the new
capabilities are described in terms of potential requirements.
One salient feature of the traces is that they are defeasible—
that is, can be revised at runtime; this was needed as the
task and quality ontologies are cumulative, so that some traces
may become inappropriate as the underlying ontologies evolve.
Technical details of the algorithm are presented elsewhere [4],
[5].

In its current form, the algorithm and the overall approach
are not ready for industrial use: considerable human inter-
vention is required when defining traces. The approach did,
however, point to one relevant direction for research in RE,
namely, the representation of and reasoning about preferences
over requirements, and priorities between preferences. Prefer-
ences are of clear relevance in pluripotent IS—the user states
what is ideally to be satisfied by the composer, but also makes
explicit alternative and still acceptable degrees of satisfaction.
Given that the pool of available modules varies, preferences
are necessary to avoid either idealistic requirements (so that
the composer cannot obtain a satisfactory composition given
a pool of modules) and/or much too restrictive requirements.
Restrictive requirements arise from stakeholders’ pessimistic
expectations, whereby it happens that the composer actually
can satisfy requirements to a more desirable extent, but is
limited by the fixed restrictive requirements. Preferences that
cannot be simultaneously satisfied are conflicting. Priorities
are defined over conflicting preferences; a priority order gives
an order of importance over preferences. Once the composer
encounters a conflict of preferences, it seeks an optimal
composition which optimizes the most important preferences
first. Hence, priorities help in resolving trade offs at runtime.
We recently finished a first report which explores the rela-
tionships between the concepts of preference and priority, and
established categories in RE (e.g., goals, softgoals, constraints,
etc.) [1], [6], [7]. The resulting conceptual framework will
hopefully act as a starting point for developing requirements
elicitation and specification methods for pluripotent IS.

In summary, our efforts on the RE of pluripotent IS involved
mainly the definition and testing of concepts and techniques
which are grounded and reuse established results in RE. In
light of the problem definition given earlier, we have worked
mainly on issues 2 and 3. Work on issue 1 will benefit

from results in the modeling and analysis of preferences and
priorities in artificial intelligence (e.g., [30], [31]).

V. CONTINUALLY LEARNING OPTIMAL COMPOSITIONS

In the context of the problem defined earlier, our efforts
focused on issues 5 and 6, that is, the identification of the
appropriate composition given a request and a pool of available
modules, and the revision of the composition to account for
new modules or the unavailability of previously used modules.
We have therefore assumed that the sequence of tasks to
execute in order to fulfil the request is known. The problem
we have tackled is one of finding out how to allocate tasks to
modules (equivalently: how to assign modules to tasks) and
continually revise the allocation.

Difficulty in defining a task allocation procedure for com-
posers in pluripotent IS arises from the necessity to account
for the variable availability of modules, the availability of
many competing modules, and the non-determinism of module
executions (i.e., we cannot be sure whether the execution of a
module will go on as expected). Within the present discussion,
a task allocation procedure which acknowledges and is robust
with regards to these considerations ought to correspond to
the feature set (B, C, F, H, J).

To enable this feature set, we advocate that module com-
positions optimal with regards to a set of criteria need to be
learned at runtime and revised as new modules appear and
availability of old modules changes, whereby the learning
should be based on observed module performance, and not
the performance advertised by the module providers. To en-
able such learning, an allocation procedure is needed which
both exploits the observed past performance of modules, and
explores new composition options to avoid excessive reliance
on past data. To this aim, we suggested elsewhere the Multi-
Criteria Randomized Reinforcement Learning (MCRRL) ap-
proach to module composition [2], [3]. MCRRL integrates two
components:

• A generic request model to describe the process to
execute by the module composition and the criteria and
constraints to meet when executing it. The request model
indicates the kind of information that the algorithm
expects from the user when allocating process tasks to
modules. In MCRRL, the process model is specified in
the form of a statechart. Statecharts provide an expressive
formalism for describing processes, have well defined
syntax and semantics so tools can be applied for veri-
fication and silmulation purposes, and incorporate flow
constructs used in available process modeling languages.
These languages (e.g., BPMN [32]) can thus be used to
specify processes in MCRRL.

• A reinforcement learning algorithm, called Randomized
Reinforcement Algorithm (RRL), to select the mod-
ules that are to perform tasks specified in the request.
The algorithm decides on the modules to select among
competing modules, and this based on multiple criteria
(including various quality of service parameters, deadline,



reputation, cost, and user preferences), while both exploit-
ing available module performance data and exploring new
composition options.

In contrast to comparable related work (mentioned earlier,
§III), MCRRL uses reinforcement learning (RL) to allocate
tasks to modules. RL (see, e.g., [33] for an introduction) is
a particularly attractive approach with regards to the above
problem. RL is a collection of methods for approximating
optimal solutions to stochastic sequential decision problems.
An RL system does not require a teacher to specify correct
actions. Instead, the learning agent (here, the composer) tries
different actions and observes the consequences to determine
which are the best, given a set of criteria to obey and
parameters to optimize. Each action is an allocation of a task
to a module, whereby the module executes the allocated task
whereby the transition occurs, and the next task then needs
to be allocated. After the transition, the composer receives a
positive or negative ‘reward’, thus reinforcing or weakening
the tendency to allocate the previously allocated task to the
module which just executed the task. The composer then
proceeds to allocate the following task. One advantage of
RL over, e.g., queuing-theoretic algorithms (e.g., [34]), is that
the procedure for allocating modules to tasks is continually
rebuilt at runtime: i.e., the composition procedure changes as
the observed outcomes of prior composition choices become
available. The composer tries various allocations of tasks to
modules, and learns from the consequences of each allocation.
Another advantage is that RL does not require an explicit
and detailed model of either the computing system whose
operation it manages, nor of the external process that generates
process model. Finally, being grounded in Markov Decision
Processes, the RL is a sequential decision theory that properly
treats the possibility that a decision may have delayed conse-
quences, so that the RL can outperform alternative approaches
that treat such cases only approximately, ignore them entirely,
or cast decisions as a series of unrelated optimizations.

One challenge in RL is the tradeoff between exploration
and exploitation. Exploration aims to try new ways of solv-
ing the problem, while exploitation aims to capitalize on
already well-established solutions. Exploration is especially
relevant when the environment is changing: good solutions
can deteriorate and better solutions can appear over time. In
module composition, exploitation consists of learning optimal
allocations of tasks to modules, and systematically reusing
learned allocations. Without exploration, the composer will
not consider allocations different than those which proved
optimal in the past. This is not desirable, since in absence
of exploration, the composer is unaware of changes in the
availability of WS and appearance of new modules, so that
the performance at which requests are fulfilled inevitably
deteriorates over time in an open and distributed system.

If RL is applied to task allocation, the explo-
ration/exploitation issue can be addressed by periodically
readjusting the policy for choosing task allocations and
re-exploring up-to-now suboptimal execution paths [35],
[33]. Such a strategy is, however, suboptimal because it

does not account for exploration. Our algorithm, inituially
introduced in [36] has been subsequently [2], [3] adapted to
task allocation to allow the assignment of tasks to modules
while: (i) optimizing criteria, (ii) satisfying hard constraints,
(iii) learning about the performance of new modules so
as to continually adjust task allocation, (iv) exploring new
options in task allocation, and (v) accomodating concurrent
allocations. The exploration rate is quantified with the
Shannon entropy associated to the probability distribution
of allocating a task to a module. This permits the continual
measurement and control of exploration. Further technical
details of the algorithm have been presented elsewhere [2],
[3].

Apart from not accommodating situations which the precise
sequence of tasks is unknown, the approach briefly introduced
above requires significant computing resources for any realistic
use. Numerous iterations are needed to learn the most appro-
priate composition, so that real time performance is still not
satisfactory. Optimization to specific domains through guided
exploration is one way to improve performance in industrial
settings.

VI. DISCUSSION AND CONCLUSION

We have argued above (§III) that the appropriate set of
features is (B, D, F, H, J) for composers in a pluripotent
IS. We have presented elsewhere [1], [2], [3], [4], [5], [6],
[7] fragments of the solutions which are oriented towards
enabling the said feature set. We have shown in this paper
how these various techniques and concepts combine to enable
the engineering of pluripotent IS. More precisely, our efforts
resulted in a framework, outlined above, which enables the
building of systems with the feature set (B, C, F, H, J),
whereby we have suggested a rich ontology for the functional
and nonfunctional requirements (which concerns the feature
B). Returning to the loan provision example (§II-C), the
approach outlined above allows the engineering of the IS that
can support the flexible loan provision we have described as
a desirable scenario.

Pluripotent IS are not intended to replace or compete
with available paradigms in IS engineering. As we have
argued throughout the paper, pluripotent IS rely on available
paradigms such as service- and agent-oriented computing, and
are relevant when particular conditions hold. Namely, develop-
ers of the system cannot anticipate precisely all requirements
that the stakeholders may have on the system at runtime, the
system relies on modules developed by providers outside the
system’s development team, and when the resulting system is
intended to cater to wide ranging requirements (i.e., it can be
put to serve various purposes).

The research reported here is still in progress. We have
highlighted above the main limitations of the overall ap-
proach. Two limitations stand out. First, the technique for
the continual update of rich requirements specifications still
involves considerable manual effort. Second, the composition
algorithm (MCRRL) is costly in computational resources. We
are working to improve our proposal in both areas. Namely,



automation of the continual requirements update process is
being explored through the reuse of results in defeasible
logic programming. Automation of preference and priority
elicitation and consistency checking is also a concern, and will
benefit (as mentioned earlier) from available results in artificial
intelligence. As our evaluations were mostly grounded in
controlled simulation settings, we are currently working on
an open software platform which will enable the simulation
and testing of a pluripotent IS in more realistic settings.
Work is currently being performed to extend the approach
outlined herein to allow the processes not to be known—that
is, to enable process discovery given a goal state only. After
additional experience is gained on pluripotent IS, we intend
to work on tools to assist the engineering of pluripotency into
IS and the evolution of available IS towards a pluripotent
architecture.
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