
Justifying Goal Models

Ivan J. Jureta
Info. Manag. Research Unit,

University of Namur, Belgium
iju@info.fundp.ac.be

Stéphane Faulkner
Info. Manag. Research Unit,

University of Namur, Belgium
stephane.faulkner@fundp.ac.be

Pierre-Yves Schobbens
Institut d’Informatique

University of Namur, Belgium
pys@info.fundp.ac.be

Abstract

Representation and reasoning about information
system (IS) requirements is facilitated with the use of
goal models to describe the desired and undesired IS
behaviors. One difficulty in building and using goal
models is in knowing why a model instance is as it is at
some point of the requirements engineering (RE) proc-
ess. If justifications for modeling choices are missing,
an instance of a goal model can neither be considered
appropriate nor inappropriate in a given RE project.

This paper suggests a Goal Argumentation Method
(GAM) for recording the decision-making process
which results in modeling choices. GAM combines a
design rationale approach that guides commonsense
reasoning about the goal model with an argumentation
model which records and allows analysis of the justifi-
cation processes leading to modeling decisions.

1. Introduction

A starting point in RE is the representation of goals
that the future IS will need to achieve once developed
and deployed [17]. Goal modeling can be defined as
the activity of representing and reasoning about IS
goals using models, in which goals are related through
relationships among themselves and with other model
elements, such as tasks that system agents/actors are
expected to execute, resources that they can use, or
roles that they can occupy. With a number of currently
established RE methods relying on goal models in the
early stages of requirements analysis (e.g., [1], [6], [7],
[11], [17], [19]), there seems to be a consensus that
such models are useful in RE activities.

When an instance of a goal model is constructed by
few stakeholders having similar backgrounds, during a
very limited amount of time, and for a relatively simple
system, there is no need to record the details of the
decision process that has led to the final goal model.
However, when a number of stakeholders with differ-
ent backgrounds participate in RE goal modeling ac-

tivities, and the rationale behind the modeling deci-
sions is not recorded, the following issues can appear:
• A stakeholder cannot know why another stakeholder

has made some modeling decision. The result may
be an unnecessary review of the model instance,
changes, or additional explaining. These activities
require time and resources that could be used in
other, more productive tasks.

• A stakeholder cannot recall the reasons for making a
modeling decision. While goal modeling is an itera-
tive process, authors’ experience indicates that a
modeler will often review prior decisions because of
imperfect recall of reasons leading to them in the
first place. Future iterations could be better in-
formed if arguments behind prior ones are explicit.

• The ideas, arguments, and assumptions underlying a
decision remain implicit or are lost over time. Al-
ternative ideas and confronting views that could
lead to different, possibly more adequate modeling
choices are lost as well. Both can lead to a poor un-
derstanding of the problem and of potential solu-
tions. Empirical results suggest that this is an impor-
tant cause of RE project failure [5].
One possible approach to reducing these problems

during RE is to externalize and document arguments
that justify modeling decisions in an instance of a goal
model. To facilitate this task, the paper proposes the
Goal Argumentation Method (GAM). The method
draws on design rationale approaches [12] and AI ar-
gumentation models [2]. Overall, stakeholders con-
struct arguments to justify a modeling decision, or use
arguments to question existing arguments and deci-
sions. In this paper, GAM is applied to the goal model
from the Tropos method [1], [8], mainly because it
uses modeling concepts common in RE. The meeting
scheduler case study [18] is used for illustration.

The goal modeling justification problem is first il-
lustrated via an example (§2). The same example is
then used to illustrate the features and use of GAM
(§3). Related work is discussed (§4), conclusions are
drawn, and directions for future work are identified (§5).

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

2. The justification problem illustrated

Consider a system for scheduling meetings, similar
to that described in [18]. The meeting scheduler should
try to select a convenient date and location, such that
most potential participants participate effectively. Each
meeting participant should provide acceptable and un-
acceptable meeting dates based on his/her agenda. The
scheduler will suggest a meeting date that falls in as
many acceptable date sets as possible, and is not in
unacceptable date sets. The potential participants will
agree on a meeting date once an acceptable date is
suggested by the scheduler.

A goal model instance for such a system would be
represented in Tropos as an instance of the i-star Stra-
tegic Rationale (SR) model1. An example SR diagram2

for such a system, taken as-is from [19], is given in
Fig. 1. It shows actors such as Meeting Scheduler and
Meeting Participant, their interdependencies in the
achievement of goals, the execution of tasks, and the
use of resources, and their internal rationale when par-
ticipating in the given IS. For example, the Meeting Be
Scheduled goal of the Meeting Initiator can be
achieved (represented via a means-ends link) by sched-
uling meetings in a certain way, consisting of (repre-
sented via task-decomposition links): obtaining availabil-
ity dates from participants, finding a suitable date (and
time) slot, proposing a meeting date, and obtaining
agreement from the participants. Rectangles with an
irregular shape designate softgoals which differ from
goals in that there are no objective criteria for their

1 Because SR extends the basic syntax and semantics of the i-star
Strategic Dependency model [19], the SR will be used as the refer-
ence Tropos goal model in this paper.
2 For simplicity, the term diagram will be used to replace the term
model instance in the remainder of the paper.

satisfaction. They are commonly used to introduce
nonfunctional requirements in a goal diagram.

During the RE process, the appropriateness of this
goal diagram3 can be evaluated on the basis of argu-
ments that support its given structure. If arguments are
missing, many alternative diagrams that could be pro-
duced by the various stakeholders for the same IS
could be considered appropriate, provided that they
make no errors when using the syntax and semantics of
the goal model. While the SR in Fig. 1 serves as a
valuable example to illustrate the syntax and semantics
of the i-star framework in [19], it is difficult to accept
without justification that diagram as more appropriate
than another one in a RE project. Lack of arguments
supporting the diagram in Fig. 1 can lead a stakeholder
reading it to ask, among other the following:
- How does the initiator inform participants that a

meeting is being organized?
- Would it not be user friendly for the meeting initia-

tor to inform participants about the meeting using
the meeting scheduler?

- Would it not be user friendly if the scheduler looked
available dates up in participants’ electronic agendas?

- Does the scheduler remind participants of the meeting
date? If yes, how/when does it do so? If no, why not?
If justification was explicitly given for the above

diagram, all stakeholders might know that, e.g., the
initiator prefers to inform participants verbally, that
different formats of electronic agendas make it costly
to develop a scheduler that can communicate with each
participant’s software, and so on. Even if such ques-
tions are not asked, making it unnecessary for the re-

3 The appropriateness of a model is defined here as the probability of
the IS resulting from the given model to satisfy stakeholder needs. In
this paper the focus is on working to increase this probability, not on
measuring it.

Meeting
Scheduler

Organize
meeting

Quick Meeting Be
Scheduled

Low effort

Meeting
Initiator

Schedule
meeting

-

Let
Scheduler
schedule
meeting

+
- +

D Meeting Be
Scheduled

D

D

D

Obtain
available

dates

Obtain
agreement

Schedule
meeting

Enter date
range

Merge
available

dates

Find
agreeable

slots

Meeting
participant

Enter
available

dates

Find
agreeable
date using
Scheduler

D

DD

D

Agreement

D

D

Find
agreeable

date by
talking to
initiator

Richer
medium

- +

+

-

Arrange
meetingQuality

(proposed
date)+

Proposed
date

Agree to
date

Agreeable
(Meeting

date)

User
friendly

Convenient
(meeting

date)

+

Participate
in meeting

Attend
meeting

Attends
meeting

D D

Low
effort+

actor boundary

Goal Softgoal

Resource

Actor

Task

Legend

Task-decomposition link

Means-ends link

Contribution to softgoal
+

Dependency link
D

Figure 1. An i-star Strategic Relationship diagram from [19] for the case study

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

quirements engineer to address them, additional ideas
and assumptions that could have surfaced and led to
additional requirements as a result of the questions
would remain hidden. It would be easier to consider
the goal diagram in Fig. 1 appropriate if modeling de-
cisions leading to it are justified.

Although justification can be informal and without a
particular structure, the following benefits can be
gained by using a structured method:
• By using a design rationale approach [12], each

element introduced in a goal diagram can be related
to a set of arguments that do or do not justify the
modeling decision leading to the given representa-
tion of that element. Design rationale approaches
assist in commonsense reasoning by organizing a
design (here, goal modeling) activity. They can al-
low the requirements engineer to identify additional
requirements from arguments, helping therefore in
the modeling activity.

• If arguments are formalized, the justification process
can be analyzed for conflict and preference over ar-
guments can be established [2]. Furthermore, the jus-
tification process for a goal diagram can be automated.

• When new information becomes available, the
change of the goal diagram that it may require can be
easier to understand if prior arguments are explicit.

3. The Goal Argumentation Method for
justifying goal modeling decisions

To realize the benefits identified in §2, GAM com-
bines a design rationale approach and an argumentation
model. The resulting method is applied when building a
goal model to justify modeling decisions, or when ques-
tioning already made modeling decisions.

3.1. The design rationale approach in GAM

Design rationale research [12] is concerned with as-
sisting humans when reasoning about the rationale be-
hind decisions that lead to the production of an artifact.
A design rationale expresses elements of the reasoning
which has been invested behind the design of the arti-
fact [14]. The various design rationale approaches that
have been suggested in the software engineering litera-
ture give a set of concepts and suggest ways in which
they can be manipulated during a design activity (for
an overview, see [12]). For example, the IBIS [4] ap-
proach consists of relating issues that need to be delib-
erated to positions that resolve issues, and arguments,
that support or object to positions. Recently, [12] sug-
gested the reasoning loop model, which integrates
common characteristics of established design rationale
approaches. It starts from a description of a problem

which generates goals that characterize potential solu-
tions. Then, hypotheses about potential solutions that
satisfy goals are generated through problem analysis.
Evaluation of alternative hypotheses leads to a justifi-
cation of a selected alternative, which in turn leads to
deciding an action. The result of an action is likely to
lead to new goals, thus restarting the reasoning loop.

The purpose of a design rationale in GAM is to give
an overall organization to the decision-making process
involved in modeling goals. It clarifies the order of
activities that stakeholders need to execute when con-
structing a goal diagram in such way that existing goal
analysis techniques can fit in the modeling process.
This way, the design rationale approach fills the gap
between abstract suggestions on how the goal model-
ing activity should be organized (e.g., elicit goals from
available documentation and look further by asking
why and how questions [17]) and very specific, low-
level analyses already available in RE methodologies
(such as goal refinement, abstraction, and operationali-
zation [9], [17]), without requiring any of these to be
changed to fit the design rationale approach.

To the best of the authors’ knowledge, there are no
comparative studies that classify design rationale ap-
proaches according to their relevance to goal-oriented
RE. As the reasoning loop model claims to be generic,
in that it features static and dynamic characteristics
common to most approaches (i.e., placing no restriction
on the properties of the artifact being designed, being
lightweight and informal, and aiming for nonintrusive-
ness and nonprescriptiveness), it is used in GAM.

However, the original reasoning loop model has
been specialized for use in GAM because the latter is
intended for use mainly with goal models. Each of the
concepts in the reasoning loop model is adjusted to fit
the context in which GAM is used. The adapted rea-
soning loop model is given in Fig. 2.

Goal model construction starts here with a problem
setting, which generates problem statements (called
goals in the original reasoning loop model4). A prob-
lem statement designates any objective to be reached,
demand to be satisfied, problem to be solved, issue to
be discussed, in general anything that one would like to
achieve [12]. It should not be mistaken for a RE goal: a
problem statement may result in adding a goal to a
diagram, but it may also lead to adding any other mod-
eling element or changing the diagram in any other
way. Problem analysis consists of stakeholders arriv-
ing at suggestions, proposals, or ideas about the resolu-
tion of the stated problems. The latter are called alter-
natives. These are evaluated by generating arguments

4 This change has been made to avoid misunderstanding, since goal
in the original reasoning loop model has different meaning than goal
in RE goal models.

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

that provide support or argue against each alternative.
Evaluation leads the stakeholders to accept one alterna-
tive by justifying their decision. Finally, the goal dia-
gram is changed to reflect the decision that has been
made. The reasoning loop model therefore involves ab-
duction (moving from the problem to alternative solu-
tions) and retroduction (moving from alternatives to the
selection and application of an alternative). The comple-
tion of a cycle leads to the initiation of a new reasoning
loop, until stakeholders agree that no further reasoning
about the goal model is required. The reasoning loop
must be closed, i.e., all activities need to be executed –
otherwise, the stated problem is not adequately addressed.

Notice the dashed arrows. They indicate that addi-
tional reasoning loops may be initiated from each of
the specific reasoning activities. It is possible to iden-
tify new problem statements from alternatives (e.g., an
alternative may require existing diagram elements to
change in a way not anticipated in the problem state-
ment), alternatives justifications (e.g., new information
appearing during evaluation can result in diagram
modification), and diagram changes (e.g., adding a new
goal may require determining the agent/actor that will
be responsible for the achievement of that goal). There
is no dashed arrow from the problem statement since it
initiates the main reasoning loop again.

Example. To illustrate the use of the reasoning loop
in GAM, part of an SR for the meeting scheduler is
constructed starting from an empty diagram. The out-
put of the reasoning loop (i.e., the reasoning diagram)
is on the left-hand side of Fig.3. The right-hand side of
Fig. 3 shows the partial SR associated to the reasoning
diagram. To relate SR diagram elements to the ele-
ments of the reasoning diagram, each SR element is
annotated with the reference of the reasoning loop
element from which it is derived. For example, the goal
Schedule Meeting is marked with PS1 indicating the
reasoning element (here, the problem statement at the
root of the reasoning model) that led to the introduction
of the goal in the goal model. As a convention, argu-

ments for an alternative are marked with ArgX+/-, where
X is the number of the argument in the argument list, and
+ (plus) and – (minus) symbols are used, respectively to
indicate that the argument supports or does not support an
alternative. Additional observations can be made:
• There is information in the reasoning diagram that is

not in the goal diagram (e.g., the reasoning behind
the construction of the goal diagram), and there is
information in the goal diagram that is not in the
reasoning diagram (e.g., that some expression in an
argument is a task or a goal). The two diagrams are
complementary, allowing a stakeholder to discover
why a goal diagram has been constructed in a par-
ticular way by reading it in conjunction with the
reasoning diagram.

• Because the construction of the incomplete dia-
grams in Fig. 3 started from an empty sheet, the in-
formation in both of them is imprecise, and can be
ambiguous: for example, one could ask whether
there are security and organizational structure issues
(e.g., only a manager can initiate a meeting) in al-
lowing every user to be able to initiate a meeting.
Ambiguity is not a problem at this stage, since it is
its elucidation that will result in enriching both dia-
grams and making them precise: For example, one
could ask if the task marked 2.Alt1 is a decomposi-
tion of another model element, and if so, which one;
or if goal Schedule Meeting could be decomposed
further and how, etc.

• GAM can be used to document the reasoning behind
the use of specific goal analysis techniques, already
established in RE (such as, e.g., goal refinement and
operationalization [17]). For example, the modeler
can document reasons leading to, e.g., a refinement
of the Schedule Meeting goal. In addition, the in-
stance of the reasoning model can also point to the
need for refinement or the application of another
available technique.

• GAM can be employed, in the same way as above,
to raise questions, critique, and structure discussion
about a goal model for which the rationale and ar-
guments have not been recorded.
The example above does not use the argumentation

model available in GAM. Arguments are written infor-
mally, without structure, and there are no particular analy-
sis techniques for argument inconsistency and defeat.
Using GAM without a structured approach to arguments
and justification is referred to as light mode. To relate the
content of arguments closer to the content of a goal dia-
gram, and allow analyses such as argument inconsistency,
defeat, and counter-argumentation, a formal model of
argument is combined to the reasoning loop. GAM nor-
mal and advanced modes, illustrated respectively in
§3.2.2 and §3.2.3 use the formal argumentation model.

Problem
statement

Alternatives

Diagram change

Alternatives
justification

Problem
analysis Evaluation

DecisionProblem
setting

Figure 2. GAM-specific reasoning loop model

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

3.2. The argumentation model in GAM

Argumentation modeling literature [2] in the artifi-
cial intelligence field focuses on formalizing common-
sense reasoning in the aim of automation. An argumen-
tation model is a static representation of an argumenta-
tion process, which can be seen as a search for argu-
ments, where an argument is a set of rules that are
chained to reach a conclusion. Each rule can be rebut-
ted by another rule based on new information. To for-
malize defeasible reasoning, elaborate syntax and se-
mantics have been developed (e.g., [2], [15]) com-
monly involving a mathematical logic to formally rep-
resent the argumentation process and reason about ar-
gument interaction.

The argumentation model in GAM provides a way of
structuring the justification process in the Evaluation step
of the GAM reasoning model and relating the content of
arguments closer to the content of a goal diagram.

To illustrate the need for an argumentation model in
GAM, consider the example in §3.1 (Fig. 3). Notice
that alternative 2 has been chosen over alternative 1.
The requirements engineer could alleviate the justifica-
tion problem by pointing to the fact that all stake-
holders agreed that Alt2 is more adequate than Alt1 in
terms of IS ease of use and user friendliness (1.Just2).
However, this choice could be considered as justified
only because the clearly negative argument in Alt2
(i.e., 1.Alt2.Arg4-) is rebutted by the argument
1.Alt2.Arg5+, while the other negative argument
1.Alt2.Arg1- is written in such way that its second part
provides support against its first part. Therefore, the
engineer could overlook the ambiguity in 1.Alt2.Arg1-

and conclude that there are no arguments that interfere
with alternative 2. In contrast, because there are no
arguments that interfere with the negative arguments
which themselves interfere with alternative 1 (i.e.,
1.Alt1.Arg3- to 1.Alt1.Arg5-), choosing alternative 1 is
not justified. In presence of an argumentation model, it
is required that the arguments for each alternative be
more precise and their interrelationships explicit to
allow more rigor in justification.

The argumentation model is used in two ways in
GAM: a formal unrestricted way, in which the defeasi-
ble rules involved in the argumentation process are
represented using well-formed formulas (wffs) of a
first-order language; and a formal restricted way, in
which the defeasible rules are represented with an ad-
ditional set of predefined keywords based on the ontol-
ogy underlying the goal model and which are applied
on wffs. When GAM is used in the former way, it is
referred to as its normal mode, whereas the latter is its
advanced mode. The normal mode is suggested when it
is preferred that the content of the GAM reasoning
diagram be precisely related to the content of the goal
diagram, while GAM advanced serves as a theoretical
basis in providing tool support for recording and analy-
sis of justification for goal modeling decisions.

In contrast, the use of the light mode versus the nor-
mal/advanced modes is dictated by the characteristics
of the IS for which the requirements are being engi-
neered (e.g., it may be desirable to use the nor-
mal/advanced GAM modes when justifying IS re-
quirements likely to affect system safety or security),
the availability of the required expertise (i.e., nor-
mal/advanced modes involve the manipulation of for-

1.Alt1: Use email to schedule
meetings.

PS1: Meetings should be
scheduled in a user friendly
and effortless way.

1.Alt1.Arg1+: Low cost.

1.Alt1.Arg2+: Software
available and standardized.

1.Alt1.Arg3-: Dificult to keep
track of many emails.

1.Alt1.Arg4-: Requires many
emails to be exchanged
before agreeing on a date.

1.Alt1.Arg5-: Initiator needs
to find a date manually.

1.Alt2: Build a meeting
scheduler that plugs-in an
email client.

1.Alt2.Arg1-: Costly, but the
budget is available.

1.Alt2.Arg2+: Automatic date
suggestion to the initiator
reduces effort.
1.Alt2.Arg3+: User friendly if
well integrated in the user
interface of the email client.
1.Alt2.Arg4-: To keep costs
low, requires users to have
the same email client.
1.Alt2.Arg5+: All users in the
firm use the same email
client (diff. ver. for Mac/PC).
1.Alt2.Arg6+: Any user could
use the scheduler to organize
meetings.
1.Alt2.Arg7+: More user
friendly if participants do not
need to input date sets
themselves.

PS2: The meeting date
suggested by the scheduler
should be confirmed by the
initiator prior to sending it to
the participants.

PS3: What functionality
should the scheduler
interface provide?

2.Alt1: Use a popup window
to ask the initiator for
confirmation and select a list
of recepients from the
address book.

2.Alt1.Arg1+: ...

2.Alt1.Arg2+: ...

PS4: The scheduler should
have secure access to each
potential participants
eletronic agenda.

1.Just2: Alt2 is preferred to
Alt1 by the stakeholders,
because they consider it to
be more user friendly and
requiring less effort in use.

PS5: The scheduler should
grab potential dates from the
participants’ electronic
agendas.

PS6: Should’t there be a
budget estimate that would
allow cost to be taken into
account with user friendliness
and effor in use?

...

...
...

...

...

...

...

Meeting
Particip.

PS1
Schedule
meeting

D D

1.Alt2
Email
client

PS2
Confirm potential

meeting date
before sending

D

PS1
Meeting
Scheduler

1.Alt2.Arg3
User interface

widgets

1.Alt2.Arg3
Provide

convenient user
interface to users

1.Alt2

Meeting
Initiator

1.Alt2.Arg3
User friendly

PS5
User agenda

data1.Alt2.Arg7

1.Alt2.Arg7
Grab dates

without user
intervention

+

1.Alt2.Arg2

2.Alt1
Ask for

confirmation via
popup

 1.Alt2.Arg3
+

1.Alt2.Arg3

Figure 3. An example of using the GAM reasoning loop to build an i-star SR model

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

malisms), and resource availability (e.g., less time is
needed when using the light mode).

The argumentation process is first formally charac-
terized below. The given characterization serves as a
basis for GAM normal and advanced mode uses illus-
trated later using the running example.

3.2.1. A formal model of argument. This section out-
lines specific features of the argumentation model sug-
gested in [15] and later extended to avoid fallacious
argumentation [16]. This model has been selected over
other (for an overview, see [2]) for its integration of
prior theoretical ideas in a precise, formal, and usable
approach to argument-based defeasible reasoning. The
GAM argumentation model is a particular case of this
general model applied here in RE activities.

Let represent indefeasible knowledge that is con-
sistent (|–/ false), and let N and C be, respectively
necessary (general) knowledge and contingent (par-
ticular) knowledge. Contingent knowledge contains
information that depends on the individual constants of
a first-order language (i.e., depends on the context,
or, in other words, this information is expressed with
well-formed formulas (wffs) that contain variables),
while necessary knowledge is independent of the con-
text. The knowledge of a stakeholder j is then ex-
pressed by a pair (Kj, j), where Kj is a consistent sub-
set of , and j is a finite set of defeasible rules. A
defeasible rule has the form –– . The relation “ ––”
between wffs and of is understood as expressing
that “reasons to believe in antecedent provide rea-
sons to believe in the consequent ”. A shorter way to
read it is “ is reason for “ [2].

Given the stakeholders’ knowledge, it is necessary
to determine which of the knowledge that they provide
during the reasoning process is justified in the given
context. To do so, formulas in K (K = jKj) are related
with instances of (= j j) grounded in the given
context with a formula h using the defeasible conse-
quence “| ”, defined as follows.

Let A be a member of K and = {A1, …, An} a set
where each Ai is a member of K or is a context-
grounded instance of a member of . A well-defined
formula A will be called a defeasible consequence of
the set (i.e., | A) if and only if there exists a se-
quence B1, …, Bm such that A = Bm, and, for each i,
either Bi is an axiom of or Bi is in , or Bi is a direct
consequence of the preceding members of the sequence
using modus ponens or instantiation of a universally
quantified sentence.

The defeasible consequence is used to define the ar-
gument concept: Given a context K and a set , the set
T which is a subset of context-grounded defeasible
rules is called an argument for h C in the context K,
denoted T, h K (or simply T, h), if and only if:

1. K T | h, (K and T derive h)
2. K T |–/ false (K, T are consistent)
3. T’ T, K T’ | h (T is minimal for K)

A subargument S, z of T, h is an argument s.t. S T.
While an argument can be constructed by combining

explicitly expressed knowledge (e.g., from a knowledge
base, as is often the case in argumentation modeling
literature), the aim with GAM is to start from a sentence
h and build arguments that support h from knowledge
that stakeholders provide, and that can be related to h.
The following example illustrates how the definitions
above are used to build an argument in GAM.

Example. Consider the suggestion (see, Fig 3):
“1.Alt2. Arg3+: (Meeting scheduler is) user friendly if
well integrated in the user interface of the email client.”
For a meeting scheduler ms, a wff h for which we wish
to argue or interfere can be written: user_friendly(ms).
Stakeholders may then suggest a set of defeasible rules:

 = { easy_to_learn(X) usable_ui(X)
–– user_friendly(X), standardized_ui(X)
already_known_ui(X) –– usable_ui(X),

integrated_in_existing_app(X) stake-
holders_use_existing_app(X) –– al-
ready_known_ui(X) }

And the following necessary knowledge (or, knowl-
edge that all stakeholders accept at face value), where

 is the standard implication operator:

K = { already_known_ui(X) easy_to_learn(X) }

An argument structure that supports h can be con-
structed using the given knowledge and defeasible rules,
and represented using a tree-like structure as shown in
Fig. 4. The root of the tree is the sentence for which the
argument structure provides support. To build an argu-
ment that interferes with user_friendly(ms), an argument
that supports user_friendly(ms) is built. Four binary
relationships are defined:

• T1, h1 T2, h2 : Arguments T1, h1 and T2, h2
disagree iff they are inconsistent for K, i.e., K
{h1, h2} false.

• T1, h1 ⎯→⎯h T2, h2 : T1, h1 counterargues T2,
h2 at h iff a subargument T, h of T2, h2 is such

integrated_in_existing_app(ms)

already_known_ui(ms)

usable_ui(ms)

user_friendly(ms)

easy_to_learn(ms)

already_known_ui(ms)

stakeholders_use_existing_app(ms)

Figure 4. An argument structure

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

that T1, h1 and T, h disagree. For example, a su-
bargument T3, easy_to_learn(ms) of T4,

low_effort(ms) counterargues the argument given
in Fig. 4.

• T1, h1 spec T2, h2 : Let D be a set of grounded
wffs then T1, h1 is strictly more specific than T2,
h2 iff: (i) S D if KG S T1 | h1 and KG S | /
h1 then also KG S T2 | h2. (ii) S D such that
KG S T2 | h2, KG S | / h2 and KG S T1 | /
h1. The specificity relation establishes a partial order
on arguments s.t. more specific arguments are pre-
ferred over less specific ones. For example,
{easy_to_learn(ms) usable_ui(ms) ––

user_friendly(ms)}, user_friendly(ms) is more spe-
cific than {easy_to_learn(ms) ––

user_friendly(ms)}, user_friendly(ms) , because if
easy_to_learn(ms) alone is used to activate the argu-
ment for user_friendly(ms), it cannot by itself acti-
vate user_friendly(ms). If easy_to_learn(ms) us-
able_ui(ms) alone is used to activate support for
user_friendly(ms), the argument that supports

user_friendly(ms) can also be activated.
• T1, h1 def T2, h2 : T1, h1 defeats T2, h2 iff

there is a subargument T, h of T2, h2 such that
T1, h1 ⎯→⎯h T2, h2 , and either T1, h1 spec T,

h , or T1, h1 is unrelated by specificity to T, h .
The justification process consists of recursively de-

fining and labeling a dialectical tree T, h as follows:
1) A single node containing an argument structure T,

h with no defeaters is by itself a dialectical tree for
T, h . This node is also the root of the tree.

2) Suppose that T1, h1 , …, Tn, hn each defeats T,
h . Then the dialectical tree T, h for T, h is built
by putting T, h at the root of the tree and by mak-
ing this node the parent node of roots of dialectical
trees rooted respectively in T1, h1 , …, Tn, hn .

3) When the tree has been constructed to a satisfactory
extent by recursive application of 1) and 2), label
the leaves of the tree undefeated (U). For any inner
node, label it undefeated iff every child of that node
is a defeated (D) node. An inner node will be a de-
feated node iff it has at least one U node as a child.
Do step 4) after the entire tree is labeled.

4) T, h is a justification (or, T is justification for h) iff
the node T, h is labeled U.
The above argumentation model and justification

process are adapted for use in GAM, as follows.

3.2.2. GAM normal mode. When it is preferred to
precisely relate the contents of the GAM reasoning
diagram to the contents of the goal diagram, to use
argument binary relationships to analyze argument
interaction, and to use the above justification process,
GAM is used in its normal mode.

In normal mode, the reasoning model (§3.1, Fig. 2)
is combined with the justification process (§3.2.1) in
the following way. First, when problem analysis leads
to the identification of a set of alternatives, a dialectical
tree is built for each alternative using the syntax and
semantics from the argumentation model given above
(§3.2.1). Second, the evaluation reasoning activity
consists of labeling each of the dialectic trees, and ac-
cepting the one justified alternative (i.e., the alternative
whose dialectical tree is such that the root node is la-
beled as undefeated). It is required that only one alter-
native be justified – in case more than one alternative
appear justified, additional arguments need to be added
as leaf nodes to each alternative’s dialectic tree until
only one alternative remains justified. The decision
reasoning activity is reduced to choosing the alterna-
tive that is justified, and acting upon it in terms of
changing the associated goal diagram.

Example. The dialectical tree for alternative 1 “Use
email to schedule meetings” is shown in Fig. 5. Instead of
using informal arguments, the dialectical tree is built with
wffs. The justification process allowed to show that the
alternative is unjustified and therefore cannot be accepted.
Argument structures for T1, use_email_to_schedule(mi)
and T2, complicated_scheduling(mi) are also shown.
The argument T2, complicated_scheduling(mi) defeats
T1, use_email_to_schedule(mi) at usable(mi) due to

subargument {manual_scheduling(mi) –– usable(mi)},
usable(mi) of T2, complicated_scheduling(mi) .

T1, use_email_to_schedule(mi)
D

T2, complicated_scheduling(mi)
U

T3, manual_scheduling(mi)
U

use_email_to_schedule(mi)

low_cost(mi)

software_available(mi)

usable(mi)

no_learning_required(mi)

complicated_scheduling(mi)

manual_scheduling(mi)

many_mails_to_read(mi)¬usable(mi)

confirm_by_email(mp) send_availability_by_email(mi)

Figure 5. A dialectical tree with detail shown

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

3.2.3. GAM advanced mode. To allow tool support to
be provided for automated recording and analysis of
arguments for goal modeling decisions, the GAM ad-
vanced mode is defined. This is realized by defining a
mapping allowing the stakeholders to translate between
a goal diagram and a dialectical tree. A tool can then be
constructed based on these rules. In this paper, rules for
translating between a Tropos Goal Diagram (TGD) and
a dialectical tree (DT) are suggested. The DT can thus
be submitted to Tropos-specific analyses (if it is trans-
lated into a TGD), and a TGD can be subjected to the
analysis of the justification behind the modeling deci-
sion that led to it.

Mapping is defined using an intermediary language
and a set of keywords illustrated with case study exam-
ples in Table 1. When translating from a TGD to a DT
(moving from left to right in Table 1) the intermediary
language is used to write down the structure of the TGD.
The obtained TGD specification is then translated into
wffs labeled with a restricted set of keywords. The rules
used for translating between the intermediary language
and the DT are referred to as the GAM/Tropos transla-
tion rules and are formalized as follows. The operator
“label ” is used to mark translation rules, with label indi-
cating the name of the rule being used in the translation:
goal(Name) goal achieve(wff) | maintain(wff) |

achieve&maintain(wff) | avoid(wff)

task(Name) task do(wff)
resource(Name) resource use(var) | provide(var)
softgoal(Name) softgoal optimize(wff)
actor(Name) actor var

cgmodel := goal(Name) | … | softgoal(Name)
cgmodeltype := goal | … | softgoal
ckeyword := achieve(wff) | maintain(wff) | … | optimize(wff)

contribution[+](cgmodel1, cgmodel2) contribute[+] (cgmodel1
cgmodeltype ckeyword1 cgmodel2 cgmodeltype ckeyword2

ckeyword2 –– ckeyword1).

contribution[-](cgmodel1, cgmodel2) contribute[-] (cgmodel1

cgmodeltype ckeyword1 cgmodel2 cgmodeltype ckeyword2
T1, h1 , T2, h2 such that h1 is the wff in ckeyword1 and

h2 is the wff in ckeyword2 and T2, h2 def T1, h1).

task-decomposition(task(Name), cgmodel) task-decomposition
(cgmodel cgmodeltype ckeyword task(descr) task do(wff)

 do(wff) –– ckeyword).

means-ends(goal(descr), cgmodel) means-ends (cgmodel
cgmodeltype ckeyword goal(descr) goal achieve(wff) | …
| avoid(wff) achieve(wff) | … | avoid(wff) –– ckeyword).

dependency(mel1, cgmodel, mel2) dependency (
cgmodel cgmodeltype ckeyword

 (i = {1,2}, meli = (cgmodeli,1, …, cgmodeli,r)
 1 k r, cgmodeli,k cgmodeltype ckeyword i,k

 with cgmodeli,1 actor vari r 0
i, depi = mckeywordi,m, 2 m r)

Table 1. GAM/Tropos translation rules with examples

Schedule
meeting goal(Schedule meeting) achieve(schedule_meeting(ms))

Low effort softgoal(Low effort) optimize(schedule_meeting(ms))

Element in the Tropos goal diagram Intermediary language Labeled well-formed formula in a dialectical tree

task(Ask for confirmation via popup) do(ask_for_confirmation(ms))

resource(User agenda data) provide(user_data_agenda(email_client))User agenda
data

actor(Meeting Participant) meeting_participantMeeting
Particip.

or ms (a variable, not a wff)

contribution[+](task(Grab dates withour
user intervention), softgoal(user friendly))

optimize(user_friendly(ms))

Ask for
confirmation

via popup

User
friendly

Grab dates
without user
intervention

do(grab_dates_automatically(ms))

Grab dates
without user
intervention

User agenda
data

task-decomposition(task(Grab dates
withour user intervention), resource(User

agenda data)) do(grab_dates_automatically(ms))

provide(user_data_agenda(email_client))

Ask for
confirmation

via popup

+

means-ends(task(Ask for confirmation via
popup), goal(Confirm potential meeting

date before sending))
achieve(confirm_before_sending(mi))

do(ask_confirmation_via_popup(ms))Confirm
potential

meeting date
before sending

contribution[-](task(Grab dates withour
user intervention), softgoal(user privacy))

User
privacy

Grab dates
without user
intervention

-

optimize(user_privacy(ms))

do(grab_dates_automatically(ms))

dependency(mel1,
goal(schedule_meeting), mel2)

depend(mp, achieve(schedule_meeting(ms)), ms)D D

achieve(schedule_meeting(ms)) (see transl. rules)

Meeting
Sched.

Meeting
Particip. Schedule

meeting
mel2 (see GAM/Tropos translation rules for meaning of

mel1 and mel2)mel1

(see transl. rules)

¬

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

(ckeyword dep1) –– depend(var1, ckeyword,
 var2) depend(var1, ckeyword, var2) –– dep2)

Observe that the relationships in the goal model are
interpreted as defeasible rules. Intuitively, this seems
adequate: e.g., if a task is decomposed into a resource
in a TGD, the need to provide the resource can be in-
terpreted to exist because that resource is used when
executing the given task; in a negative contribution, the
link in the TGD is directed from an element that con-
tributes negatively to the target softgoal, whereas in a
DT, a negative contribution exists between a defeater
argument and the argument it defeats. The dependency
relationship is interpreted as a chain of two defeasible
rules (–– ––). In the first, marks the depend-
ency between actors and is the dependum of the de-
pendency (because, e.g., in a goal dependency, the de-
pendum goal is a reason for the dependency to exist:
the depender cannot achieve the goal without the de-
pendee). In addition, can contain one or more ckey-
word to indicate why the depender alone is unable to
obtain the dependum (this is required if a Tropos SR is
being translated, whereas it is often unknown in a Tro-
pos SD). In –– , expresses goals/tasks/…/softgoals
that the dependee is expected to, respectively achieve/
…/optimize in order to assist the depender in obtaining
the dependum (is often unknown in a Tropos SD,
whereas it is available in a Tropos SR). To translate a
DT to a TGD, the wffs appearing in the DT are trans-

formed into labeled wffs. Labels are used to derive a
goal diagram element from a wff. For wffs that are to be
translated into goals in a TGD, the Tropos goal taxon-
omy [8] is employed, giving four labels: achieve(wff),
maintain(wff), achieve&maintain(wff), and avoid(wff).
For wffs that will result in resources, the label pro-
vide(wff) is used when a resource is being provided by
an actor, whereas the label use(wff) is applied when the
resource is to be used by an actor. Table 1 and the Tro-
pos/GAM translation rules give other labels along with
their corresponding TGD representation.

Example. The dialectical tree whose argument struc-
tures are shown in Fig. 6 has been obtained by applying
the translation rules to the Tropos SR in Fig. 1. Since the
SR in Fig. 1 contained alternatives, one alternative has
been translated. Using the obtained dialectical tree, the
stakeholders can e.g., question modeling choices by
providing new arguments that defeat existing ones and
lead to changes in the tree. For example, the labeled rule
optimize(low_effort(mi)) –– do(let_scheduler_schedule(mi))
may appear inadequate to some stakeholders. They may
add additional rules that would either defeat the antece-
dent or the consequent, or provide further arguments to
support both. For lack of space, we do not discuss circu-
lar arguments that appear in the above tree and that may
be undesirable, as circularity amounts to supporting or
denying something by itself. An example is
do(schedule_meeting(ms)) which partially supports itself
through other defeasible rules (see bottom of Fig. 6).

optimize(quick_scheduling(mi)) optimize(low_effort(mi)) achieve(meeting_be_scheduled(mi))

do(organize_meeting(mi))

do(let_scheduler_schedule(mi))

depend(mi, achieve(meeting_be_scheduled(ms), ms)

achieve(meeting_be_scheduled(ms))

depend(ms, do(enter_date_range(mi)), mi)

do(enter_date_range(mi))

do(schedule_meeting(ms))

do(schedule_meeting(ms))

do(merge_avail_dates(ms))

achieve(find_agreeable_slot(ms)) do(obtain_agreement(ms)) do(obtain_avail_dates(ms)) do(schedule_meeting(ms))

do(find_agreeable_date_using_ms(mp))

do(schedule_meeting(ms))

do(agree_to_date(mp))

do(agree_to_date(mp))

do(schedule_meeting(ms))

depend(mp, provide(proposed_date(ms)), ms)

depend(ms, do(enter_avail_dates(mp)), mp)

depend(ms, provide(agreement(mp)), mp)

¬optimize(richer_medium(mp))

¬optimize(quality_of_prop_date(mp))

¬optimize(convenient_meeting_date(mp))

achieve(agreeable_meeting_date(mp))

¬optimize(user_friendly(mp))

¬optimize(low_effort(mp))

do(arrange_meeting(mp))

optimize(low_effort(mp))

do(participate_in_meeting(mp))

optimize(convenient_meeting_date(mp))do(attend_meeting(mp))

depend(mi, achieve(attends_meeting(mp), mp)

do(organize_meeting(mi))

Figure 6. Meeting scheduler Tropos SR diagram (Fig. 1) translated using GAM/Tropos translation rules

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

4. Related work

The goal-oriented RE literature provides mainly two
ways to justify the structure of a goal model. The first,
based on the NFR method for nonfunctional require-
ments analysis [3] has been explicitly integrated in Tro-
pos. It consists of defining a set of imprecise nonfunc-
tional goals (i.e., softgoals) which express criteria for
system quality (e.g., usability, adaptability, etc.), and
evaluating the degree to which an alternative model
structure would lead to an IS that is usable, adaptable,
etc. Evaluation is qualitative. Argumentation goals are
used for justification and are specialized for and limited
to softgoal models [13]. In the second method [10], prob-
ability of each alternative to satisfy a set of goals is esti-
mated and used for comparing alternatives. While this
brings the comparison process closer to objectivity and
precision, it appears difficult and costly to use as it re-
quires probability estimates to be produced in some way.
Because justification for a model structure is summarized
in a probability estimate, information leading to the esti-
mate can remain hidden for most stakeholders.

A third way, explored in this paper, is to allow quali-
tative and quantitative information into arguments. The
novelty of GAM is to combine a design rationale ap-
proach to organize commonsense reasoning with a for-
mal argumentation model to document the arguments
leading to a modeling decision and allow structured justi-
fication to take place, while allowing informal and for-
mal use with any goal model. As arguments accept both
qualitative and quantitative information, the importance
of quantitative evidence can be acknowledged, along
with qualitative, subjective, and defeasible information.

5. Conclusions and future work

A RE goal diagram can be considered neither appro-
priate nor inappropriate if modeling decisions leading to
that diagram are not justified. This paper suggested a Goal
Argumentation Method (GAM) used to justify modeling
decisions that lead to a specific goal diagram. In a RE
project, stakeholders can use GAM in different ways. The
light mode complements goal diagrams with reasoning
diagrams containing unstructured and informally stated
arguments. The normal mode introduces formal argumen-
tation to allow the requirements engineer to precisely re-
late the contents of the GAM reasoning diagram to that of
the goal diagram, to use binary relationships between
arguments to analyze argument interaction within a struc-
tured justification process. The advanced mode defines
RE method-specific mapping between a goal diagram
and a dialectical tree so that tool support can be pro-
vided for automated recording and analysis of argu-
ments for goal modeling decisions.

Effort is currently focused on three issues. First, we
explore whether translation rules independent of the
RE method can be defined, due to the fact that at least
some conceptual foundations are shared by various
established goal-oriented RE methods. Second, we
work on developing analysis techniques that would
enrich traditional goal-oriented RE in terms of allow-
ing, e.g., fallacious argumentation to be discovered in a
goal diagram. Third, we intend to develop a tool on the
basis of translation rules in GAM advanced mode.

6. References

[1] J. Castro, M. Kolp, and J. Mylopoulos, “Towards require-
ments-driven information systems engineering: the Tropos pro-
ject”, Info. Sys., 27(6), 2002, pp. 365-389.
[2] C.I. Chesnevar, A.G. Maguitman, and R.P. Loui, “Logical
Models of Argument”, ACM Comp. Surv., 32(4), 2000.
[3] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering, Kluwer, 2000.
[4] J. Conklin, and M.L. Begeman, “gIBIS: A hypertext tool for
exploratory policy discussion”, ACM Trans. Inf. Syst., 6(4), 1988.
[5] B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the Soft-
ware Design Process for Large Systems”, Comm. ACM, 31(11), 1988.
[6] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-
directed requirements acquisition”, Sci. Comp. Progr., 20, 1993.
[7] P. Donzelli, “A goal-driven and agent-based requirements
engineering framework”, Req. Eng., 9(1), 2004, pp.16-39.
[8] A. Fuxman, L. Liu, Mylopoulos J., M. Pistore, M. Roveri,
and P. Traverso, “Specifying and Analyzing Early Requirements
in Tropos”, Req. Eng., 9(2), 2004, pp. 132-150.
[9] E. Letier Reasoning about Agents in Goal-Oriented Re-
quirements Engineering. Phd Th., Univ. of Louvain. 2001.
[10] E. Letier, and A. van Lamsweerde, “Reasoning about partial
goal satisfaction for requirements and design engineering”, ACM
Sigsoft Softw. Eng. Notes, 29(6), Nov. 2004, pp. 53-62.
[11] L. Liu, and E. Yu, “Designing information systems in social
context: a goal and scenario modeling approach”, Info. Sys., 29, 2004.
[12] P. Louridas, and P. Loucopoulos, “A Generic Model for
Reflective Design”, ACM Trans. Softw. Eng. Meth., 9(2), 2000.
[13] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and
Using Nonfunctional Requirements: A Process-Oriented Ap-
proach”, IEEE Trans. Softw. Eng., 18(6), 1992, pp. 483-497.
[14] B.S. Shum, and N. Hammond, “Argumentation-Based De-
sign Rationale: What Use at What Cost?” Int. Journ. Human-
Comp. Studies, 40(4), Apr. 1994, pp. 603-52.
[15] G.R. Simari, and R.P. Loui, “A mathematical treatment of
defeasible reasoning and its implementation”, Artif. Int., 53, 1992.
[16] G.R. Simari, C.I. Chesnevar, A.J. Garcia, "The Role of Dia-
lectics in Defeasible Reasoning", Proc. XIV Int. Conf. Chilean Soc.
in Comp. Sci., 1994.
[17] A. van Lamsweerde, “Goal-Oriented Requirements Engineer-
ing: A Guided Tour”, Proc. 5th IEEE Int. Symp. Req. Eng. 2001.
[18] A. Van Lamsweerde, R. Darimont, and Ph. Massonet, “The
Meeting Scheduler Problem: Preliminary Definition”, Univ. ca-
tholique de Louvain.
[19] E. Yu, “Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering”, Proc. 3rd IEEE Int.
Symp. Req. Eng., 1997.

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

