
Normative Management of Web Service Level
Agreements

Caroline Herssens1, Stéphane Faulkner2, and Ivan J. Jureta2

1 PRECISE, LSM, Université catholique de Louvain, Belgium
2 PRECISE, LSM, University of Namur, Belgium

caroline.herssens@uclouvain.be,
{stephane.faulkner,ivan.jureta}@fundp.ac.be

Abstract. Service Level Agreements (SLAs) are used in Service-
Oriented Computing to define the obligations of the parties involved in
a transaction. SLAs define these obligations, including for instance the
expected service levels to be delivered by the provider, and the payment
expected from the client. The obligations of the parties must be made
explicit prior to the transaction, and a mechanism should be available
to control the interaction, in order to ensure that the obligations are
met. We outline a norm-oriented multiagent system (NoMAS) architec-
ture that is combined with the service-oriented architecture in order to
support the definition, management, and control of SLAs between the
service clients and service providers.

Keywords: SLA, management, mutual obligations, supervision, norm
oriented multi-agent systems.

1 Introduction

We focus in this paper on the critical task of ensuring that the contractual
obligations of the parties – the service providers and the service clients – involved
in a transaction are respected by these parties within a service-oriented system.
Their obligations are typically outlined in a service-level agreement (SLA). An
SLA is a contract between the said parties, who specify the quality-of-service
(QoS) levels that should be met [17]. QoS is a combination of several quality
properties, e.g., availability, reliability, cost, response time [21]. A provider can
propose the same service at different quality QoS levels. When a service client
requests the execution of a given functionality, it advertises its QoS expectations.
The service selected for the service execution will be the one that best satisfy
client expectations about QoS properties. Prior to the transaction, the client and
the provider enter into a contract by signing an SLA, and thereby specify quality
levels to be observed during the service execution [17]. SLAs are used in the QoS
management context in order to know what clients requirements to meet, how to
manage clients expectations, how to regulate resources and to control costs [26].

The use of SLAs in managing the transaction between a provider and a
client requires appropriate conceptual foundations and associated computational
mechanisms. SLAs require an architecture if they are to enable the interactions

B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 98–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Normative Management of Web Service Level Agreements 99

between stakeholders. This architecture must support a specification language
used by the stakeholders to communicate their expectations and capabilities.
Similarly, a specification language to define the elements of the SLA is needed.
Beside the architecture, the SLA management needs an incentive mechanism.
To stimulate the correct behavior of stakeholders, these must have mutual obli-
gations. E.g., the provider has the obligation to meet a given QoS level and the
client has the obligation to pay according to that quality level. However, the
client pays for the service after its execution by the provider. It follows that
the client’s payment can be adapted to the QoS level delivered by the provider.
Finally, stakeholders can behave in an opportunistic manner, i.e., the client can
underevaluate the QoS level perceived and the provider can exaggerate the QoS
level offered. To prevent such situations, the architecture must introduce a third-
party controller to monitor the SLA execution.

The architecture must support the adaptation of SLA during the service ex-
ecution. This architecture needs to be responsive and flexible. Norm-oriented
Multi-Agent Systems (NoMAS) provide these characteristics. Normative agents
refer to agents conforming to norms. The core idea of this paper is to adapt
the analogy of norms and agents to the issue of SLA and stakeholders. An SLA
will be described as a set of norms to be fulfilled by the different agents of the
system. The stakeholders of the service execution will be represented by nor-
mative agents complying to norms that restrict their behavior. The architecture
supports a language enabling the communication between stakeholders. This
language allows to express norms to be followed by the normative agents of the
MAS. The elements constitutive of the SLA are defined by obligations norms
regulating the stakeholders.

Contributions. We propose an architecture based on normative agents in order
to: (i) enable the communication between stakeholders involved in the SLA with
a common language; (ii) define SLAs that meet provider capabilities and client
requirements; (iii) manage the service execution and check the conformance of
the quality level expected and observed; (iv) ensure the execution of the mutual
obligations according to the SLA contract. We propose to achieve the SLA com-
pliance through two particular mechanisms: mutual obligations, which motivate
the fulfillment of respective obligations of the involved stakeholders; and a super-
vised interaction with a third-party controller, which monitors and evaluates the
SLA execution and penalizes the agents that does not fulfill their obligations.

Organization. Section 2 presents the conceptual foundations of the approach.
Section 3 outlines the management architecture and the management of SLA.
Section 4 proposes an evaluation of the proposed approach. Section 5 summarizes
the related work and the Section 6 concludes this paper.

2 Case Study and Conceptual Foundations

This Section covers the conceptual foundations of our SLA management ap-
proach. We first describe the case study used to illustrate the approach proposed

100 C. Herssens, S. Faulkner, and I.J. Jureta

in this paper. We briefly introduce the Service Level Agreement concept. We also
outline the mutual obligations and the supervised interaction used throughout
the approach.

2.1 Case Study

We refer in this paper to a case study coming from the European Space Agency
(ESA) program on Earth observation. This program allows researchers to access
and use the infrastructure operated and the data collected by the agency1. The
data and infrastructure of the ESA are accessed through web services. In order
to facilitate the discussion and delimit our example, we focus on one part of the
overall system. The MERIS/MGVI service is a service able to use the MERIS
instrument data provided by the Envisat satellite of the ESA to compute the
vegetation indexes for a given period of time and region of the world. A veg-
etation index measures the amount of vegetation on the Earth’s surface. The
data on the vegetation index can be obtained for any time range and it is possi-
ble to delimit the region of the world that is of interest. This service is subject
to one particular QoS characteristic: the latency is initially situated between 4
and 6 hours by day of the selected period. E.g.: if the time range selected is
from October 24th 2009 to October 26th 2009, the execution time needed to
compute the vegetation index is set between 12 to 18 hours. The length of the
selected period impacts then strongly the time needed to fulfill the request. The
SLA specification between stakeholders of this service must clearly constrain
the execution time prior to all remaining QoS properties. The different concepts
presented in this paper will be illustrated with the MERIS/MGVI service and,
specially about the execution time of this service.

2.2 Service Level Agreement

A Service Level Agreement is a contract between the service provider and the
service client specifying mutually agreed obligations of the provision of a ser-
vice [6,30]. The SLA concerns the non-functional properties of the service [17],
i.e., quality properties. When clients can choose among a set of functionally
equivalent web services, Quality of Service (QoS) considerations become the key
criteria for service selection. As a consequence, SLA about nonfunctional prop-
erties must be defined and managed between service clients and providers [17].

The specification of QoS obligations of a SLA starts from a set of Service Level
Objective (SLOs) [26]. A Service Level Objective is a guarantee of a particular
state of the SLA parameters in a given time period [13]. All quality properties
advertised by the provider are associated to an SLO as illustrated in Example 1.
Each SLO has a functional part that refers to the QoS concerned and a guar-
antee part (italicized in Example 1) applied on the functional part. With SLOs,
the SLA covers all quality properties defined in the QoS request of the service
client.
1 http://gpod.eo.esa.int

http://gpod.eo.esa.int

Normative Management of Web Service Level Agreements 101

Example 1. The provider of the MERIS/MGVI service shall execute the service within

5 hours by day of the selected period.

Example 1 is the SLO stating the maximum execution time of the agreement
defined between the provider and the client. As referred in Section 2, the ex-
ecution time of the MERIS/MGVI service is very important and needs to be
clearly defined in the SLA. The SLA definition is communicated between the
different stakeholders of the service execution. To assure the interoperability of
SLA definitions, their specifications need to be written in a language common to
providers and clients. The Web Service Level Agreement (WSLA) language [13]
is one of the main standard for specifying SLAs. The Example 2 illustrates how
the SLO agreement of the Example 1 is specified with WSLA.

Example 2.

<ServiceLevelObjective name=’’exectime’’>
<Obliged>provider</Obliged>
<Validity>

<Start>2009-10-25T08:00:00.000-05:00</Start>
<End>2009-10-30T08:00:00.000-05:00</End>

</Validity>
<Expression>

<Predicate xsi:type=’’wsla:Less’’>
<SLAParameter>ExecutionTime</SLAParameter>
<Value>ExecutionTimeThreshold</Value>

</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>

<ServiceLevelObjective>

The ExecutionTimeThreshold used in Example 1 is a constant that assigns
a name to a simple value that can be referred in other definitions [13]. This
threshold corresponds to the maximal execution time expected by the client,
i.e., 5 hours by day of the selected period to compute.

2.3 Mutual Obligations

Delivering the service at the quality level specified in the SLA is an obligation
for the service provider. However, the service client has an obligation to pro-
vide all the information needed for the service execution (i.e.: inputs needed
for web service execution), but also to pay for the service execution. Interac-
tions between the provider and the client involve mutual obligations [20]. Such
bilateral obligations motivate the SLA conformance. Indeed, breaches to some
obligations of one party can compromise the fulfillment of obligations of the
other party. Both parts have interest in achieving their obligations to meet the
contract. Goodin [10] outlines the possible structures of mutual obligations. The
SLA of web services can be defined as mutually conditional obligations. With
mutual conditional obligations, each party is obliged to discharge his obliga-
tions if and only if the other party discharges his obligations. E.g., if the service
provided does not meet the contracted execution time, the client has not to pay

102 C. Herssens, S. Faulkner, and I.J. Jureta

the amount initially set. The SLA defines mutual obligations compelling the
respective behavior of stakeholders.

The service execution is made of bilateral obligations, i.e., unilateral obliga-
tions from the provider about the service level execution and unilateral obliga-
tions of the client about payment or rating [16,22]. We consider in the remainder
of this paper that the client obligation is only about payment. However, other
contractual obligations can be used as feedback rating as requests frequency.

The execution of obligations occurs sequentially: obligations of one of the
stakeholders are executed before the obligations of the other. E.g., the provider’s
obligations are executed before the client’s and the level of payment can conse-
quently be adapted to the degree, to which the provider conforms to the obli-
gations. Adaptations of the client obligations according to the observed quality
level must be specified in the initial SLA. In the classification of mutual obliga-
tions [10], SLA contracts are diachronic mutual obligations, because one party is
supposed to discharge its obligations before the other party does the same. The
consequence is that initial contract must specifies the expected penalties if the
defined quality level is not met [16]. The SLA contract implies that the penalty
is initially accepted by the provider. Clearly, the efficiency of the relationship ex-
isting between the client and the provider improves if specifications of penalties
for cases of contract breaches are present.

2.4 Supervised Interaction

Stakeholders of the service execution must achieve their respective obligations
to conform to the initial SLA. If they are not supervised, they can adopt an
opportunistic behavior, i.e., not fulfill their obligations or fulfilling them at a
level lower than expected. E.g., the service client can reduce the payment even
if the quality level provided meets is expectation. To prevent such situations,
we propose to monitor the service execution with a third-party. This third-party
will act as a controlling authority and allows to ensure the correct execution of
the SLA. It is a witness of the service execution and stimulates the conformance
to SLA for both involved parts. The third-party allows deterrence-based trust,
i.e., you trust the other party because there is a very strict rule normative or
legal system of rules, and the agent is punished for any violation of rules [7]. The
third-party is the controller that controls the compliance of both parts to rules
defined in the SLA, it measures the efficiency of the stakeholders transactions
and computes their respective reputations [23]. An analogy of the third-party
controller is the ebay online auction website2. The evaluation system of ebay
prevents the opportunistic behavior of the stakeholders of the transaction.

This authority has an additional role in managing the SLA. Namely, it is
in charge of collecting and computing metrics. It collects and stores metrics
defined in the SLA and computes them to compare observed and expected re-
sults. Such metrics are used to establish the trust value of stakeholders involved
in transactions. The measurement of quality values is allowed by existing metrics

2 http://www.ebay.com

http://www.ebay.com

Normative Management of Web Service Level Agreements 103

such as those discussed in [8]. If an SLA is breached, the third-party controller
sends notifications to the involved stakeholders. The third-party is independent
of the parties involved in the actual transaction, given that its aim is to prevent
opportunistic behavior.

3 The Architecture and the Process for SLA Management

To solve the issues of SLA definition and its management during the service
execution, we propose to use a normative MAS. Our proposed system will allow
the SLA management and stimulates the SLA compliance through the respect
of mutual obligations and the supervision of an authority. We first introduce our
agent architecture that monitors the SLA through the service stakeholders in
Subsection 3.1. We then explain how SLAs are managed with this architecture
through the definition of norms associated to the stakeholders in Subsection 3.2.

3.1 SLA Management Architecture

We chose to use a normative multi-agent system to monitor the execution of
SLA. A normative multiagent system (MAS) involves normative mechanisms,
which allow agents to adopt norms and specify how agents can modify these
norms [4]. Norms can increase the efficiency of agent reasoning while their ex-
plicit representation supports reasoning about a wide range of behaviour types
in a single framework [9]. Agent norms describe the obligations, permissions and
prohibitions of a norm addressee to pursue certain activities, either to achieve a
state of affairs or to perform an action [18]. The behaviour of an agent is mon-
itored by its norms defining its permissions and obligations. Such a normative
system allows deterrence based trust, the agent is punished for any violation of
rules of the normative system [7].

The stakeholders of the service execution and the third-party controller are
managed by normative agents. Norms condition the behavior of agents, the SLA
is defined by obligations and prohibitions restraining the set of possible actions.
We manage SLAs with normative agents coordinated within a suitable archi-
tecture. Three kinds of normative agents step in this architecture: the provider
agents, the client agents, and the cluster agents. These are illustrated in Figure 1.

A cluster agent (AClus) is dedicated to each existing cluster of web services. A
cluster of web services gathers functionally equivalent web services by providing
several web services inside a unique wrapper. This wrapper is used by service
clients as a standard web service. Services in a same cluster can be offered by
different providers. The cluster selects the service that best satisfies the QoS ex-
pectations of the client in the cluster with an appropriate selection method [12].
This method relies on QoS advertisements of the provider and QoS expectations
of the service client. These advertisements and expectations can have be made
with WSLA [13] or another common appropriate language.

A service provider agent (AP) is dedicated to each existing provider in the
service cluster. A provider can offer several services in the cluster, i.e., the same

104 C. Herssens, S. Faulkner, and I.J. Jureta

Client

Cluster of services
AClus

AP1 AP2

AP3

ACli

Service

Agent

Services fulfilled
by Provider 3

Services fulfilled
by Provider 1

Service fulfilled
by Provider 2

Fig. 1. SLA management architecture

functionality at different quality levels. This is illustrated in Figure 1 with the
provider 1 and 3 each offering services with the same functionality and different
quality characteristics. Providers can also offer services into different clusters,
as they provide different functionalities. Provider agents advertise their QoS
possibilities to the cluster agent.

A client agent (ACli) is assigned to each client requesting a service. The
service request includes particular QoS expectations of the service client about
the service execution.

Once the SLA has been negotiated [30] between stakeholders of the service
execution it can be defined with an appropriate language. The cluster agent
is responsible of the stakeholders conformance to the SLA defined. The cluster
agent is also in charge of the collection and evaluation of metrics of the service
execution. It collects information about QoS observed at each service transac-
tion. It is able to compute statistical data on the service and able to determine
if the service execution met the defined SLA. It is the third-party controller
of the service execution, it controls the SLA compliance of the provider and
the client agent. Agents of the SLA architecture are normative agents, con-
forming to norms derived from the SLA initially defined between the client and
the provider. This architecture can be easily supported by existing normative
MAS frameworks [9,18]. In the remainder, we focus on how normative agents
can support the management of SLA. The normative MAS infrastructure and
communication is out of scope of this paper.

In the context of our case study, an agent is dedicated to each provider able
to propose a service functionally equivalent to the MERIS/MGVI service intro-
duced in the case study. A client agent is dedicated to the requester of the
MERIS/MGVI service. A cluster agent is responsible for the supervision of
interactions occurring between the client agent and the providers offering the
functionality.

Normative Management of Web Service Level Agreements 105

3.2 SLA Management Process

The management of SLAs with the proposed architecture covers several steps:
(1) the definition of the SLA between the client and the provider; (2) the control
of provider obligations, i.e., the service execution; (3) the penalties to apply to
the provider if the SLA is not met, and; (4) the control of the client obligations,
i.e., payment or evaluation. To fulfill these steps, the agents of the architecture
introduced in Subsection 3.1 will take on different roles.

Step 1: Definition of the SLA. The SLA is defined between the service client
and the service provider from WSLA specification advertised by the provider.
The WSLA specification is extended to include the mutual obligations of stake-
holders. The defined SLA must cover expectations about the quality level of the
service execution but also the penalties associated to breaches of SLA. These
penalties are defined according to the importance of quality properties involved
and according to the importance of breaches. Moreover, initial SLA specifications
can also be enriched with complex rules, dependent rules or normative rules [24].
Such extensions allow the definition of enriched contracts, e.g., graduated rules
are rules sets which specify graduated range for certain parameters so that it can
be evaluated whether the measured values exceed, meet or fall below the defined
service levels. To define these extended SLAs and include mutual obligations of
service providers and clients, usual languages as WSLA [17] or WSOL [28] need
to be enriched. To this aim, we choose to express the different SLOs of the initial
SLA with obligation norms associated to involved agents of the architecture to
benefit from the information added by more complex rules. To express SLO with
normative obligations, we refer to the work of Kollingbaum [18,19] about super-
vised interaction. Each SLO of the SLA contracted between the provider and
the client is expressed with the NoA language [18] interpretable by all agents of
the architecture. Moreover, complex conditions and penalties associated to SLO
failures are also expressed with this language in further steps. The Example 3
illustrates the conversion of the SLO specified with WSLA in Example 2 into an
obligation norm of the service provider agent specified with the NoA language.

Example 3.

obligation(
ServiceProvider,
achieve ServiceExecutionUnderTimeThreshold (ServiceProvider, Service,
ExecutionTimeThreshold),

ServiceExecuted (ServiceProvider, Service) and
ExecutionTime (Service) <= ExecutionTimeThreshold

ServiceExecutionUnderTimeThreshold (ServiceProvider, Service,
ExecutionTimeThreshold))

This obligation states that the provider must achieve the execution of the MERIS/
MGVI service under the time limit (ServiceExecutionUnderTimeThreshold)
specified in the initial WSLA specification (ExecutionTimeThreshold). The

106 C. Herssens, S. Faulkner, and I.J. Jureta

AP1
addressee

addressee counterparty

counterparty

service
ACli

AClus

control

Service ClientService Cluster

QoS evaluation
control+

payment, ...

Fig. 2. Roles fulfilled by normative agents

normative agents of the architecture monitor the execution of services through
their norms. However, these agents can make a choice whether to obey the norms
in specific cases. If the service provider is not able to achieve all SLOs of its
contract, it can violate some of them to assure the fulfillment of remaining norms.
This situation arises due to unexpected events (i.e.: additional requests, hardware
failures) or because the provider amplified its capabilities to be selected. Among
all SLOs defined with obligations norms between the client and the provider,
some can be met and some can not.

Step 2: Control of provider obligations. Control is enabled through mech-
anisms of normative agents. Each agent of the architecture fulfills one or several
roles in the contract management. The SLA contract is then monitored through
these different roles: the addressee commits an obligation defined in the contract;
the counter-party is the recipient of the obligation fulfilled, and; the authority
is a witness of the contract. The authority is in charge of the correct execution
of the contract and imposes sanctions in case of defective behavior of the ad-
dressee. The different roles of client, provider and cluster agents are illustrated
in Figure 2. The provider illustrated in the service cluster of this example is the
provider 1 among those proposed in Figure 1.

The interactions between the service provider and the service client (i.e., the
service execution and its payment) are restrained by obligation norms associated
to these roles. The SLOs specifying the expected QoS level of the MERIS/MGVI
service appear as norms. The provider agent is the addressee in these norms,
while the client is the counter-party in the transaction. To control the achieve-
ment of this contract, the cluster agent acts as an authority. As stated in Sub-
section 3.1, the cluster agent is responsible for collecting and computing the
metrics in order to control the SLA execution. It is then able to determine if the
service provider meets the SLOs defined through obligation norms. The clus-
ter agent will impose sanctions when the quality level provided does not meet
the level contracted in the SLA. Such sanctions appear as penalties applied to
the provider. As stated before, these penalties are part of the initial SLA. In the

Normative Management of Web Service Level Agreements 107

MERIS/MGVI instance, the decreasing of payment is proportional to the re-
duction of quality level provided. Sanctions are expressed by obligations norms
to be followed by the cluster agent. When the provider chooses or is forced
to breach a norm specifying one of its SLO, the cluster agent captures it and
activates a specific penalty. There can be several norms specifying different penal-
ties corresponding to the spreading of the breach. The Example 4 illustrates a
specification of one such penalty.

Example 4.

sanction(
ServiceCluster,
perform EvaluationTime (ServiceProvider, Service, ExecutionTimeThreshold,
ExecutionTimeThreshold 2, AmountPenalty),

ServiceExecuted (ServiceProvider, Service) and
ExecutionTime (Service) > ExecutionTimeThreshold and
ExecutionTime (Service) <= ExecutionTimeThreshold2

TimePenalty(ServiceProvider, AmountPenalty))

When one of the SLOs of the MERIS/MGVI service is not met, a sanction
is applied by the cluster agent according to the importance of the breach. As
stated in Section 2, the execution time is a critical issue for the MERIS/MGVI
service, sanctions to apply must penalize all provider weaknesses about delays.
The Example 4 illustrates one sanction: if the execution time observed is above
the SLA time limit (ExecutionTimeThreshold) but is under the second time
limit of the breach scale (ExecutionTimeThreshold2), the decreasing of pay-
ment (AmountPenalty) applied is proportional to the observed level on the
breach scale. The cluster agent independently estimates the equality of the qual-
ity level provided and the amount to pay. Moreover, according to characteristics
of mutual obligations in SLAs, the user must discharge its obligations only if the
provider has discharged its owns obligations.

Step 3: Penalties to apply. When the cluster agent observes that the SLA
is not fulfilled by the provider agent, it notifies the service client through the
application of a sanction. The client agent will then reflect this sanction on its
own behavior. The mutual obligations of SLAs are diachronic; the client obli-
gations are adapted to the provider fulfillment of its owns obligations. In the
Example 5, the TimePenalty is a constant defining the payment reduction of
the MERIS/MGVI service initiated by the sanction of the Example 4. There
can be several payment reduction to apply, corresponding to different level of
breach or to different QoS properties involved in the SLA. According to the
importance of the breach, the client agent follows the norm defining the corre-
sponding penalty. The obligation of the Example 5 is the client obligation to pay
for the MERIS/MGVI service execution, i.e., the contractual obligation of the
client. However, the initial payment amount (Amount) is reduced by the penalty
(AmountPenalty) induced by the time sanction illustrated in Example 4. The
payment of the service is an obligation norm in which the client agent is the
addressee and the provider agent is the counter-party as illustrated in Figure 2.

108 C. Herssens, S. Faulkner, and I.J. Jureta

Example 5.

obligation(
ServiceClient,
achieve ServicePayment (ServiceClient, ServiceProvider,
Amount - AmountPenalty),

ServiceExecutionUnderExecutionTimeThreshold (ServiceProvider, Service,
ExecutionTimeThreshold)) and
TimePenalty(ServiceProvider, AmountPenalty)

achieve ServicePayment (ServiceClient, ServiceProvider,
Amount - AmountPenalty))

Step 4: Control of client obligations. The third-party controller checks the
execution of the unilateral obligations of the service provider as detailed in Step
2. Similarly, the third-party controller must verify the obligations of the service
client, the client can be subject to different categories of obligations i.e.: its pay-
ment to the provider after the service execution. To control the right execution
of the payment obligation illustrated in Example 5, the cluster agent acts as
the third-party controller. It is the authority of the payment transaction as il-
lustrated in Figure 2. It must check that the right amount has been deposited
to the provider. If the client fails to pay or deposits a bad amount, the cluster
agent must apply a penalty. The Example 6 illustrates the sanction applied by
the cluster agent to the client of the MERIS/MGVI service when the payment
obligation is not met. With such sanctions, the cluster agent avoids the non
payment of the service client. Indeed, if the payment is not made or if it is insuf-
ficient, the client is labeled as a bad payer (PaymentPenalty(ServiceClient))
by the third-party controller. The cluster agent can then reject future requests
of bad payers on its cluster.

Example 6.

sanction(
ServiceCluster,
perform CheckPayment ServiceClient, ServiceProvider, Amount, AmountPenalty),
not ServicePayment (ServiceClient, ServiceProvider, Amount - AmountPenalty)
PaymentPenalty(ServiceClient))

4 Evaluation

Supervised interaction and mutual obligations ensure that delivery of services is
better managed. We conduct some experiments in order to evaluate the effect
of these mechanisms. These experiments simulate services transactions between
users and providers and measure their utility with and without the utilization
of such mechanisms. The utility denotes the abstract quality whereby an object
serves our purposes, and becomes entitled to rank as a commodity [15]. We
suppose here that the utility increasing is constant for each new transaction
initiated. Each transaction initiated by a client involves a cost decreasing of
its cumulated utility while each successful transaction increases its cumulated
utility. The ratio over the increasing induced by the success of the transaction

Normative Management of Web Service Level Agreements 109

and the decreasing due to the cost of the transaction must be positive. E.g.: in
our simulations, the increasing of utility is set to 1 while the service execution
succeeds and the utility decreasing of the service payment is 0.8. The net utility
of a service transaction is then 0.2. We generate 200000 transactions from 10000
different providers to 100 different users. Each service is executed 20 times by
each service client. To simulate the opportunistic behavior of providers, we define
30% of opportunistic providers that do not fulfill their transactions 70% of time.
Without mutual obligations and supervised interaction, the decreasing of client
utility involved by the service payment occurs even while services executions fail.

To simulate the supervised interaction effect, we introduce a simple trust
model. The trustworthiness of each provider is collected by the third-party con-
troller. The third-party controller monitors all services executions and dismisses
providers that fail 10 services executions previously supervised. While services
executions occur without supervised interaction, the clients collect themselves
information about past executions and dismiss providers that failed 3 of their
own previous transactions.

To simulate the interest of mutual obligations, we introduce a variable payment
model. The service client can reduce the initial payment while the provider obliga-
tions are not met. The utility decreasing of the service client can be less important
when the service execution fails. E.g.: in our simulations, the utility decreasing in-
volved by the payment is 0.8 when the service execution succeeds and is reduced
to 0.2 while the service execution fails. Without mutual obligations, the payment
has to be done and the decreasing of the client utility is fixed to 0.8.

However, the third-party controller offering such monitoring mechanisms has
to be payed. We designed two different scenarios to simulate the payment of
the third-party controller: a variable and a fixed remuneration. The variable
remuneration implies a decreasing of the client utility at each service execution.
This variable cost must be proportional to benefit of a transaction. E.g.: if the
net utility before the remuneration of the third-party controller is 0.2, the third-
party fee of each transaction can be 0.02. The fixed cost allows clients to benefit
from third-party mechanisms after a single payment. It implies an important
decreasing of the client utility. E.g.: in our simulations, we set the initial utility
of the client to -1000 while the third-party controller relies on a fixed cost.

To evaluate benefits from supervised interaction and mutual obligations, we
observe the mean cumulated utility of users during 200000 services executions. To
highlight the benefits of third-party mechanisms, we design 7 models: (1) services
executions without supervised interaction (s.i.) and without mutual obligations
(m.o.); (2) services executions without s.i. and with m.o. at a variable cost;
(3) services executions without s.i. and with m.o. at a fixed cost; (4) services
executions with s.i. and without m.o. at a variable cost; (5) services executions
with s.i. and without m.o. at a fixed cost; (6) services executions with s.i. and
m.o. at a fixed cost, and; (7) services executions with s.i. and m.o. at a variable
cost. We then measure the difference between the optimal cumulated utility and
the cumulated utility of our different models (i.e., the optimal client utility is
get while the service client never pays for the services executions that fail).

110 C. Herssens, S. Faulkner, and I.J. Jureta

0 25000 50000 75000 100000 125000 150000 200000175000
0

1000

2000

3000

4000

5000

6000

7000

transactions

D
iff

er
en

ce
 w

ith
 u

se
r

op
tim

al
 u

til
ity

(1) Difference with user optimal utility without supervised interaction
and without mutual obligations
(2) Difference with user optimal utility without supervised interaction
and with mutual obligations at a variable cost
(3) Difference with user optimal utility without supervised interaction
and with mutual obligations at a fixed cost
(4) Difference with user optimal utility with supervised interaction
and without mutual obligations at a variable cost
(5) Difference with user optimal utility with supervised interaction
and without mutual obligations at a fixed cost
(6) Difference with user optimal utility with supervised interaction
and with mutual obligations at a variable cost
(7) Difference with user optimal utility with supervised interaction
and with mutual obligations at a fixed cost

Fig. 3. Simulation Results

The results of our experiments are highlighted in Figure 3. The model nearest
to the optimal client utility is the model (7) that provides both supervised in-
teraction and mutual obligations with an initial fixed cost. However, this model
becomes the best only when the initial cost is balanced by its profitability (after
approximatively 64500 services executions) while at the beginning the most prof-
itable model is the model (6) that provides both supervised interaction and mu-
tual obligations at a variable cost. The profitability of each model is dependent
from the third-party controller payment scenario but the utilization of third-
party mechanisms always improve the client utility. The less profitable model
is the (1) that provides neither supervised interaction nor mutual obligations.
Models offering only mutual obligations ((2) and (3)) improve lightly the client
utility while models providing only supervised interaction ((4) and (5)) amelio-
rate strongly the client utility. The combination of both mechanisms (models
(6) and (7)) outperforms other models and highlight the interest of normative
agents to control SLA of stakeholders transactions. The experiments conducted
here to evaluate the client utility can be transposed to the provider utility. We
can also simulate opportunistic client that do not fulfill their obligations and
evaluate the mean utility of providers.

5 Related Work

QoS properties and SLA management need appropriate architectures to be han-
dled during the service execution. Campbell et al. [5] propose the Quality of

Normative Management of Web Service Level Agreements 111

Service Architecture (QoS-A) incorporating the notion of flow, service contract
and flow management through QoS properties. Barbosa et al. outline in [3] dif-
ferent architectural configurations to enable the auditing of SLA and to evaluate
their efficiencies. The WSLA framework [17] introduces a runtime architecture
comprising several SLA monitoring services. Some services may be outsourced
to third parties to increase the objectivity in the evaluation of the services. The
QoS Mission-Action-Resource (Q-MAR) model [14] and the Grid Quality of Ser-
vice Management (G-QoSM) framework [2] also propose to distribute the SLA
monitoring to the different components of the system. Paschke et al. [24] intro-
duce a Rule-Based Service Level Management (RBSLM) architecture in which
SLAs are represented with declarative rules and managed through logical con-
cepts and rule languages. Although all these architectures allow one to observe
when a contract is violated, most of them do not prevent such violations and
do not clearly define corrective actions to take. In our proposal, the third-party
monitors stakeholders behaviors and the mutual obligations of the stakeholders
define penalties to apply while the contract is not fulfilled. The BREIN project3
offers an architecture enabling the management of SLAs through their whole life-
cycle [1]. The SLA management is enabled by taking into account the policies of
the parties and their respective business goals. The BREIN SLA management
offers preventive monitoring to react to upcoming violations and a prioritization
of SLAs. Our normative management of SLAs adapt contracts at runtime in re-
sponse to unexpected violations in order to maximize stakeholders satisfaction.

Agents systems are well fitted to monitor activities requiring negotiation be-
tween stakeholders as SLA management or e-commerce mediation [11,27]. Other
existing SLA architectures relies on multi agent systems [29]. Yan et al. [30] in-
troduces a MAS architecture supporting the negotiation of services involved in
a composition. In comparison with existing MAS architectures, our proposal is
supported by normative agents. Normative agents allow to constrain the stake-
holders behavior with norms defining the SLA to be achieved. They are partic-
ularly relevant to the SLA management issue. Normative agents are also used
by Pitt et al. [25]. They propose a framework for QoS management which com-
bines events, metrics and parameters with organizational intelligence offered by
norm-governed multi-agent systems. Although their proposal monitors QoS in-
formation, they did not tackle the SLA conformance issue. One of the strongest
point of our work is that the agreements between clients and providers are defined
and monitored through norms associated to roles of agents and not to agents or
components of the architecture. These roles allow the architecture to offer more
flexibility, e.g., the provider can be easily substituted when unexpected failures
occurs.

6 Conclusions and Future Work

We propose in this paper an architecture enabling the management of SLA.
This architecture relies on a MAS and supports a normative definition of SLA.
3 http://www.eu-brein.com

http://www.eu-brein.com

112 C. Herssens, S. Faulkner, and I.J. Jureta

The MAS enables the communication between stakeholders involved in the
SLA. Each party of the SLA is defined with an obligation norm that constrains
stakeholders behaviors. The architecture checks the conformance of the stake-
holders to the SLA. To stimulate the proper execution of the SLA, its execution
is driven by mutual obligations and supervised by a third-party controller. The
architecture benefits from the potential autonomy assured by normative agents.
The normative architecture enables the interactions between provider and client
and also the evaluation of the quality level of such interactions.

Future work will concern the implementation and the extension of the ar-
chitecture to support actions to take while an SLA is breached. Rather than
penalize the provider or the client, the architecture will propose corrective ac-
tions. To ensure the SLA conformance, the architecture will take advantage of
the multiple services providing the same functionality inside the cluster.

References

1. Final brein architecture d4.1.3 v2 - wp 4.1 architectural design. Technical report,
BREIN project (2009)

2. Al-Ali, R.J., Rana, O.F., Walker, D.W., Jha, S., Sohail, S.: G- qosm: Grid service
discovery using qos properties. J. of Computing and Informatics 21(4), 363–382
(2002)

3. Barbosa, A.C., Sauvé, J., Cirne, W., Carelli, M.: Evaluating architectures for inde-
pendently auditing service level agreements. Future Gener. Comput. Syst. 22(7),
721–731 (2006)

4. Boella, G., Torre, L., Verhagen, H.: Introduction to normative multiagent systems.
Comput. Math. Organ. Theory 12(2-3), 71–79 (2006)

5. Campbell, A., Coulson, G., Hutchison, D.: A quality of service architecture.
SIGCOMM Comput. Commun. Rev. 24(2), 6–27 (1994)

6. Cappiello, C., Comuzzi, M., Plebani, P.: On automated generation of web service
level agreements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 264–278. Springer, Heidelberg (2007)

7. Castelfranchi, C., Tan, Y.-H. (eds.): Trust and deception in virtual societies. Kluwer
Academic Publishers, Norwell (2001)

8. Cherkasova, L., Fu, Y., Tang, W., Vahdat, A.: Measuring and characterizing end-
to-end internet service performance. ACM Trans. Internet Technol. 3(4), 347–391
(2003)

9. Dignum, F., Morley, D.: Towards socially sophisticated bdi agents. In: Proc. of
ICMAS ’00, p. 111. IEEE Computer Society, Los Alamitos (2000)

10. Goodin, R.: Structures of mutual obligations. J. of Soc. Pol. 31(4), 579–596 (2002)
11. He, M., Jennings, N.R., Leung, H.-F.: On agent-mediated electronic commerce.

IEEE Trans. on Know. and D. Eng. 15(4), 985–1003 (2003)
12. Herssens, C., Jureta, I., Faulkner, S.: Capturing and using qos relationships to im-

prove service selection. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 312–327. Springer, Heidelberg (2008)

13. International Business Machines (IBM). Web service level agreement (wsla) lan-
guage specification (2003)

14. In, H.P., Kim, C., Yau, S.S.: Q-mar: An adaptive qos management model for
situation-aware middleware. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.)
EUC 2004. LNCS, vol. 3207, pp. 972–981. Springer, Heidelberg (2004)

Normative Management of Web Service Level Agreements 113

15. Jevons, W.S.: Theory of Utility. In: The Theory of Political Economy (1965)
16. Kaminski, H., Perry, M.: Employing Intelligent Agents to Automate SLA Creation.

In: Emerging Web Services Technology, pp. 33–46. Springer, Heidelberg (2007)
17. Keller, A., Ludwig, H.: The wsla framework: Specifying and monitoring service

level agreements for web services. J. Netw. Syst. Manage. 11(1), 57–81 (2003)
18. Kollingbaum, M.: Norm-governed Practical Reasoning Agents. PhD thesis (2005)
19. Kollingbaum, M.J., Norman, T.J.: Supervised interaction - a form of contract man-

agement to create trust between agents. In: Falcone, R., Barber, S.K., Korba, L.,
Singh, M.P. (eds.) AAMAS 2002. LNCS (LNAI), vol. 2631, pp. 108–122. Springer,
Heidelberg (2003)

20. Lockemann, P., Nimis, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Architectural
Design. In: Multiagent Engineering, pp. 405–429. Springer, Heidelberg (2006)

21. Menascé, D.A.: Qos issues in web services. IEEE Intern. Comp. 6(6), 72–75 (2002)
22. Morgan, G., Parkin, S., Molina-Jimenez, C., Skene, J.: Monitoring Middleware

for Service Level Agreements in Heterogeneous Environments. In: Challenges of
Expanding Internet: E-Commerce, E-Business, and E-Government, pp. 79–93.
Springer, Heidelberg (2005)

23. Mui, L., Mohtashemi, M., Halberstadt, A.: Notions of reputation in multi-agents
systems: a review. In: AAMAS ’02, pp. 280–287 (2002)

24. Paschke, A., Dietrich, J., Kuhla, K.: A logic based sla management framework. In:
SWPC ’05: Semantic Web Policy Workshop at ISWC ’05 (2005)

25. Pitt, J., Venkataram, P., Mamdani, A.: Qos management in manets using norm-
governed agent societies. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW
2005. LNCS (LNAI), vol. 3963, pp. 221–240. Springer, Heidelberg (2006)

26. Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated sla monitoring
for web services. In: IEEE/IFIP DSOM, pp. 28–41 (2002)

27. Sierra, C., Dignum, F.: Agent-mediated electronic commerce: Scientific and tech-
nological roadmap. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS
(LNAI), vol. 1991, pp. 1–18. Springer, Heidelberg (2001)

28. Tosic, V., Patel, K., Pagurek, B.: Wsol - web service offerings language. In: Bussler,
C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and
WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg (2002)

29. Trzec, K., Huljenic, D.: Intelligent agents for qos management. In: AAMAS ’02,
pp. 1405–1412 (2002)

30. Yan, J., Kowalczyk, R., Lin, J., Chhetri, M.B., Goh, S.K., Zhang, J.: Autonomous
service level agreement negotiation for service composition provision. Future Gener.
Comput. Syst. 23(6), 748–759 (2007)

View publication statsView publication stats

https://www.researchgate.net/publication/220940784

	Normative Management of Web Service Level Agreements
	Introduction
	Case Study and Conceptual Foundations
	Case Study
	Service Level Agreement
	Mutual Obligations
	Supervised Interaction

	The Architecture and the Process for SLA Management
	SLA Management Architecture
	SLA Management Process

	Evaluation
	Related Work
	Conclusions and Future Work
	References

