2016 IEEE 24th International Requirements Engineering Conference Workshops

Planning Optimal Agile Releases
via Requirements Optimization

Joseph Gillain, Ivan Jureta, Stéphane Faulkner
Data Analysis Decisions Advice (DA?) Research Unit
Department of Business Administration & PReCISE Research Center, University of Namur

Abstract—This paper focuses on improving requirements qual-
ity in agile projects by determining requirements prioritiza-
tion. Current methods suggest to take into account business
value in order to determine the requirements priority rank.
In practice it was observed that many other factors enter into
the equation, such as implementation cost and functionality
dependencies. Since agile methods suggest that priority should be
customer/user’s prerogative, taking all relevant factors becomes
challenging without decision supporting tools. Our research
question is the following: How can we formulate the agile release
decision problem, and which computations can we do over
requirements models to recommend solutions to that decision
problem? Our contributions are the following: (i) we formulate
this agile release decision problem as an optimization problem,
(ii) we provide a modelling language to represent instances of this
problem as requirements models, and (iii) we describe an online
tool to make the models and solve the resulting optimization
problem instances.

[. INTRODUCTION

A. Context: Requirements Priority in Agile Projects

Agile methods have become popular for organizing software
development. Many benefits have been touted [1]: better
knowledge transfer, active participation of the customer in the
project, incremental deliveries, and so on.

Relative to more established methodologies (e.g., waterfall),
which are based on the assumption that the problem is fully
specifiable and a solution can be entirely predicted [2], agile
methods are based on the assumption that customers, users,
stakeholders in general are not able to specify all requirements
of the system-to-be at the beginning of the software process,
due to requirement or environment change, lack of experience
in the problem domain, etc. [3].

Agile tries to treat requirements continuously through the
whole project life cycle. Development is iterative, the develop-
ment team periodically delivers increments of functionality by
focusing on requirements with highest priority at each release
planning. It ensures that value comes continuously during the
complete process and stakeholders are then being able to test
and validate the most priority requirements. Those tests help-
ing the customer clarify and refine subsequent requirements,
for later releases.

To make such an approach work for customers, require-
ments prioritization is important. The Agile Requirements
Problem (ARP) is driven by elicitation of User Stories. It starts
with the definition of high-level statements, epics, written
from the system user’s perspective, then refined into shorter,

978-1-5090-3694-3/16 $31.00 © 2016 IEEE
DOI 10.1109/REW.2016.36

10

more narrowly scoped User Stories. This refinement process is
ongoing, running throughout the system engineering process.
The literature suggests that the priority should be given by the
customer, Product Owner, to set criteria for the prioritization
of user stories.

In practice, it is known that other criteria enter into account
when prioritizing user stories. They can be, for instance, the
effort estimated to implement each user story, or functional
dependencies [4].

B. Scope: Goal Models Agile Requirement Problems

Agile requirement methods and tools have often been op-
posed to traditional requirements methods [3]. However, we
suggest that agile methods could benefit from traditional re-
quirement engineering methods especially from goal modeling
(GM). Such models could be used to support agile require-
ments and specifically prioritization of emerging requirements.

Similarly to user stories, goal models are based on a
refinement process in which abstract (goals/user stories) are
refined into more concrete ones. In both cases, the refinement
process ends up with an operationalization into tasks. Another
common point is that both user stories and goals are desired
states the system should satisfy, or bring about.

However, goal models differ from user stories since they
allows among others to explore alternative solutions or to
assess conflicts between goals. They also support modelling of
non-functional requirements while it is not obvious how such
requirements should be incorporated into user stories!.

The variability aspect, or the exploration of alternative solu-
tions, of goal models seems truly interesting for agile projects
since they do not define the whole product in the early stages.
They instead specify a vision, which is imprecise and abstract,
and gives thereby a space with potentially many alternative
solutions (functionalities) that the system could implement.
Variability is even more interesting when considering that a
first “fast and cheap” version of the system could be delivered,
before investing in a more comprehensive solution to be
brought to market via subsequent releases.

C. Problem: Which requirements to satisfy when?
As we just discussed, one important principle of agile
methods is to provide highest value requirements first on the

'One can cite Alistair Cockburn’s suggestion to formulate them as con-
straints [5]. This approach can be transposed to goal models

IEEE
computer
® psouety

RE 2016 Workshops, Beijing, China

AIRE Workshop Paper

basis of business value. We call this the Agile Requirements
Problem (ARP) and it involves the following sub-problems.

Evaluation problem: How to assess this business value
because it is not independent of the implementation cost. As an
example, consider 2 candidate user stories for the next release
of a system, let’s say a and b (with respective business value
of $8000 and $5000). Before deciding which one should be
selected, it seems reasonable to also take into account their
relative cost. If a costs $5000 to be implemented while b costs
$2000, it is clear that b should be implemented first. Then,
business value should be balanced with effort estimation.

Selection problem: A second problem comes from the
difficulty to select which alternative should be implemented
when facing a lot of variability in requirements. The customer
has to select between potentially dozens of combination of
features. This is very difficult and time consuming without a
decision support tool.

Release problem: A third problem is to determine in which
order the selected solution should be delivered. It is about
release planning. The main criteria being to provide the most
value as soon as feasible in the lifecycle.

D. Contribution: An Optimization Problem and its Resolution

In this paper, we suggest how to model ARP with goal mod-
els and provides a mapping to a Mixed-Integer Programming
(MIP) optimization problem whose solutions automatically
define a planning release taking into account business value,
functional constraints and required effort. We also present
an implementation of the approach in AnalyticGraph.com, an
online tool.

The paper is structured as follows. First, we show in section
II how to model ARP instances with goal models. Then, in
section III, we present the mapping between the goal model
and a mixed-integer program. Section IV presents the solution
of the MIP. We present AnalyticGraph and the implementation
of the MIP in section V. Eventually, we discuss related works
and we conclude in sections VI and VII.

II. MODELING AGILE REQUIREMENTS WITH TECHNE

In this section, we present how we model ARP instances
with goal models. The selected Goal Modeling Language
(GML) is Techne [6]. This is because, firstly, Techne is an
abstract goal modelling language; secondly, it is straightfor-
ward how to translate Techne models into models in other
goal modelling languages; finally, this work builds on our prior
work on requirements optimization in Techne models [7].

This section first discusses the goal refinement process and
relates it to the refinement of user stories. Then, we show how
to take into account of the business value and task effort in
the goal model.

A. Refinement

In order to illustrate the refinement process of user stories
with a goal model, we use the following example. The com-
pany sends out mystery shoppers, that is, individuals unknown
at a shop, to make a purchase and subsequently evaluate the

purchasing experience. The data is then used for marketing
purposes. The goal model is depicted in Fig. 1, and we review
that model below.

There are three abstract user stories (i.e epics):

e As a Mystery Shopper (MS), I want to make visit results

available to the customer (GO)

e As a Customer?, I can access visit results in a central

repository (G16)

o As a Customer, I can explore data through vizualisations

(G37)

Each of these user stories are depicted as a goal in the goal
model. However, to make them practical for development, they
need to be refined into more concrete ones. For example, I
could consider that GO will be satisfied if a MS can record
visit results in an Excel spreadsheet (G5) and then he can
send it via mail to the customer (G6). This refinement can be
depicted in the goal model. In Techne, we use an inference
relation node (I1 in Fig. 1) between GO, G5 and G6. This
relation says that

G5 N G6 — GO. (1)

It is also possible to model some dependencies between
goals. For example, we cannot consider that G16 is satisfied
if GO has not been. This is done by adding GO in the premises
of all inference relationships which would conclude G16 as
satisfied.

In agile methodologies (e.g. SCRUM, XP), once the user
stories have been refined to an adequate level of granularity,
we can ask developers to define underlying tasks to be done.
Those tasks would integrate the Sprint Backlog, i.e. a set of
tasks to be done during the next implementation iteration. In
our goal model, this is achieved by operationalizing goals
into tasks. For example, G5 could be consider as “done”
if developers create an Excel template that will be used by
mystery shoppers (T31).

This approach fits a SCRUM approach. There, a Product
Backlog (PB) is created and iteratively filled. Each item of
the PB is a user story that can be refined more and more as
the project progresses. User stories are always descriptions of
a functionality of the system-to-be from a user perspective.
In other words, it is a desired state that the user would like.
It is similar to the goal concept in goal modeling. Once a
user story is selected for the next sprint, developers filled a
Sprint Backlogs with the underlying tasks for a given amount
of effort.

The effort required to implement those tasks (or user stories
not yet refined into tasks) are estimated in story points. For
this, one can use poker planning [8]. It is however necessary
to take into account these story points in our goal model.

B. Business Value and Story Points as Node Label

Another important concept in agile processes is require-
ments prioritization. Requirements (user stories) with the high-
est priority would be implemented first. The agile literature

2By Customer, it is understood the Mystery Shopper company’s customers.

egional government
K112 subsndlses Internet-based

— iy —»

As a MS, | want to make
visit results available
to the customer —p 110

/\\7&

As a MS, | record visit
G5 | results in an Excel
\})readsheet

1 \

As a MS, | can send
G6 | my report via mail
t\? tlhée customer

G12 wsn results
ona webplatform
Val:0

118

Create an Excel template
T31 25

Fig. 1.

As a Customer, | can
< G16 access visit results
|n a central repository’

User-friendly approach
649 Val:500 v app

As a the company
G120 | can get the
%overnment subvention

As a Customer,

- » 50 ¢—_GB37 I can explore data

rough vizualisations

g107 Acce55|ble
deV|ces
Val:250

N

G23 results in a webform

Defvlo& a webplatform Create a webform Val:-50
T4 | Val:-5i T30 | Val:-50 T109:

Modeling of the Mystery Shopper Case. Model accessible and editable at http://analyticgraph.com/dev/?g=R2CinFhvUK

1105

VaI:»SO
103

a MS, | record visit DePIOB Bl solution

T

127

Create an Excel
T45 | template with
macro folr extracting

visit results
Val:-25

- Shape meaning is the following: Goals are circles, tasks are squares, inferences are yellow triangles and conflicts are red
triangles.

insists on the fact that the business value should be the first
driver for prioritizing. However, in practice we can see that it
is not the only element to be considered for prioritizing [1].
Another important criterion to consider when prioritizing is
the required effort, which determines development cost.

Both business value and cost can be integrated in our goal
model. It takes the form of a label to associate to each node
(goal or task). In the mystery shopper example, value are
depicted as a node label prefixed by ”Val”. For example, the
goal GO will leverage 200 units of value if it is satisfied, while
T31 will consume 25 units of resources (it could be story
points).

When speaking about revenue acquired from goals, it is im-
portant to distinguish two types of revenue: recurrent revenue
and unique revenue.

In the case of the recurrent revenue, the achieved goal
will yield revenue continuously as long as it is satisfied.
For instance, consider goal G37 stating that a “Customer
can explore data through vizualisations”. Once this goal is
achieved, the mystery shopper company will asks additional
$10 per visits since the service offered has higher value. In
this case, this goal has a recurrent revenue. For this type of
goal, the earlier they are satisfied, the better it is.

With unique revenue, we model goal which yields a single
amount of value. For example, the mystery shopper could get

a subvention from government as soon as the business has an
Internet platform (G120). However, it can be accorded only
when goal G16 is satisfied and under the assumption (K112)
that the government effectively subsidies it.

Regarding task implementation, some tasks need to be done
only once and can be considered as definitely done. We call
them persistent task. Others do not have this property. A
deployment task for instance has to be redone.

Both recurrent revenues and persistence tasks are boolean
properties associated with nodes in our goal model.

C. Conflicts between goals

Conflict management is important in this approach, because
the solution should not produce a release planning whose
increments are individually conflict-free but the integrated
solution presents several conflicts.

Nonetheless, it can be interesting to deliver a first version
of a system providing some features and removing them when
a next release introduces more elaborated features (conflicting
with the previous release).

In our example, we know that if mystery shoppers record
their visits in a web-based form it will be conflicting with
recording them in a spreadsheet. This is depicted with conflict
C79. Moreover, the spreadsheet macro would be useless to

preparing visualisation if data are no more recorded in a
spreadsheet (conflict C57).

Another interesting conflict is that if customer can access
visit results on a central repository and that some analytics
are deployed, the solution should be more user-friendly than
simple excel reports. Of course, it requires than no more
reports should be registered in spreadsheet (conflict C91).

Eventually, the central repository would be usefull iff mys-
tery shopper stop sending their report via mail.

D. Project progress

An important aspect of agile project is that requirements
will evolve through the whole project. One should be able to
modify the goal model in the same way a product backlog
evolves.

After a particular sprint has ended, one should change the
story point to O if that sprint was completed. If part of tasks
is completed, task effort can be reduced.

III. MATHEMATICAL MODEL

In previous work, we described how a goal model could
be mapped into a mixed-integer program [7]. The complete
program is given in Tab. I and we discuss in more details
specific modifications bring to the MIP for dealing with ARP.

A. Objective function

Priority in agile methods should be to maximize business
value delivered to the customer. If we define u as an utility
function mapping each goal at particular sprint to a business
value, we can define the objective function as:

max Z Z u(r,p) * orp

peEPrer

where:

o P is the set of sprints,

« R is the set of goal model nodes (goals, softgoals, quality
constraints and domain assumptions),

e Oy is a binary decision variable setting if the goal r has
been achieved for period p (equals to 1 iff the node is
satisfied, O otherwise).

For modelling the importance of delivering features as soon
as possible (the urgency), a discount rate can be applied on the
utility function, resulting in a situation where u(r,i) > u(r, j)
if ¢ < j with ¢ and j being the number of the sprint. Some
features will have no more value if delivered after a particular
deadline.

B. Inference relation node

Mapping inference node in the MIP is done by adding
two constraints. The first constraint called Premises constraint
checks if incoming nodes from an inference node are all
satisfied:

Ox,p

lini)]

VpePViel: o, < Z

x€in(i)

where:

o I is the set of inference nodes,

« in(i) is the set of incoming nodes of i

« |in(i)| is the cardinality set of incoming nodes of ¢

The second constraint, called Conclusion constraints, ap-
plying only for nodes having incoming inferences:

Vpe PVn e {xz e N :|inf(z)] >0}:0,, < Z Tip
i€iny(n)

where:

e N is the set of all nodes
o inz(z) is the set of incoming inferences of x

C. Constraints for value persistence

As discussed in section II-B, their are different types of
goals and tasks regarding their business value/cost. Goals can
bring recurent revenues as long as they are considered as
satisfied or on the contrary, they can bring a unique revenue
even if their satisfaction last several sprints. By default, the
model support recurrent revenue. An additional constraint set
is needed to model single revenue goal, we call it Unique
Revenue Constraints.

Regarding task persistence, some tasks need to be done
each time it is necessary to use them, while other tasks are
required to be executed once. Default behavior of the MIP is
the non persistent tasks while an additional set of constraints
is required for persistent tasks.

1) Unique Revenue Constraints: Ensuring unique revnue of
some goals is done with:

VgeG"‘:ngUg#p

peEP

where G* being the set of goals with unique revenue.

2) Persistence of task realization: For persistent task, we
need to specify that if the task has been developed during
a previous iteration, it can be considered as satisfied for the
following iterations. It is done with the following constraints:

VpePVieT 01, < Y aig
g€{l...p}
where:

« T is the set of persistent task
e (44 is a binary decision variable assessing that the task
7 has been realized during sprint g.
The constraint is read as following, the task ¢ can be
considered as satisfied for period p (i.e. 0;, is set to one)
iff it has been realized during the current or a previous sprint.

D. Velocity constraint

Agile methods work iteratively. For example, a SCRUM
project is divided into Sprints in which developers have to
develop a certain amount of story points. This amount is called
the team velocity.

Adding this aspect into the MIP is done by adding a new
set of constraints called hereafter velocity constraints. If we

TABLE I
DESCRIPTION OF THE MIXED INTEGER PROGRAM OF FOR THE ARP MODELLED WITH TECHNE.

Constants

v Velocity

Sets

P ={1,...,p} Iterations

N =GUTUSUQUK Concept nodes (goals, tasks, softgoals, quality constaints and
domain assumptions)

G* caG Unique revenue goals

T cT Persistent tasks

M CN Mandatory nodes

C ={co,...,¢} Conflict nodes

I = {io,..., 1} Inference nodes

N* =NUI Graph nodes

R =N\T Revenues nodes

Decision Variable

ON*P ={oip,eB:ic NUIpe P} Binary variables representing satisfaction of nodes.

oF p ={a;, eB:iecT,pec P} Binary variables representing satisfaction of persistent tasks.

Functions

u :NxP—R Utility function

in(x) CNUI Incoming nodes function

iny (x) =in(x)NY Typed incoming nodes function

Objective function

max y, ». u(r,p)*o.,

peEPreRr

Constraints

. . . Tz,p
Premises (I:onstr.alnts Oip < Z i)l
Vpe PYiel: z€in(i)
Conclusion constraints Onp < Z Oip
Vp € P,¥n € {z € N : |inf(z)| > 0} : i€iny(n)
Persistent satisfaction Oip < Z Qi q
Vpe PVieT: qe{l..p}
Unique revenue 1< > o040
Vg e G*: peP
Conflict constraints Z Opp < 1
Vp e P,Vce C: z€in(c)
Mandatory constraints 1> Z Oip
Vie M : peP
Velocity constraints v> Y oult)xory Yo u(t)xoy
Vp cP teing teing

define v as the team’s velocity and P as the set of all sprints
in the project, we formalize the constraints as:

VpeP:v> Z u(t) * oy p Z u(t) * ayp

teinf tEinT
IV. MIP SOLUTION

The provided solution of the mathematical program states
in which sprint should a task be planned and it also describes
how to achieve each goal in each sprint. It is depicted in Table
1L

For example, after the first sprint, T31 and T41 would be
implemented resulting in the satisfaction of goals GO, G5,
G6 and G37. An interesting conclusion from this planning
is that it would be interesting for the customer to have a
first solution for the system (with excel files) while another
more integrated solution would come in the next sprints. This
migration would result in two periods where the customer
will have no more access to data exploration because of the
migration. Nonetheless, it is still the planning maximizing its
global satisfaction.

V. ANALYTICGRAPH AS SUPPORTING TOOL

All previously presented models and modelling primitives
are accessible on AnalyticGraph. This is a web-based platform
designed to support modelling and reasoning on RE models.
In AnalyticGraph, users model RE problems as directed graph.
Each graph consists of a set of nodes linked by directed
relations. The graph is stored in a graph-oriented database and
meta-data (e.g. graph name, author...) are stored in a relational
database. Currently, AnalyticGraph comes only with Techne as
RML, but other RMLs can be specified and used.

The case presented in Fig. 1 can be accessed at http:
/fanalyticgraph.com/dev/?g=R2CinFhvUK. Tutorials are avail-
able®. Among them is a tutorial related to goal model optimiza-
tion. This module is aimed at transforming the goal model
in the Mixed-Integer Program (MIP) described above. The
language used is the GNU MathProg language *.

VI. RELATED WORKS

This paper is on the boarder of two research disciplines.
First, it deals with requirements optimization since it tries to
identified an optimzation set of requirements between different
alternatives. Secondly, it is directly related with what is called
the Next Release Problem [9].

Several approaches have already suggested for applying
optimization techniques on requirements engineering. In the
paper, Zhang et al. discussed them in general by presenting
advantages and challenges [10].

One of the first application is suggested by [11]. It gives
developers a method to balance the cost and value of the
requirements, and then implement the most cost-effective set.

Bagnall et al. were the firsts to coined the term Next Release
Problem [9]. It is about selecting a set of requirements that is

3http://analyticgraph.com/category/tutorial/
“https://en.wikibooks.org/wiki/GLPK/GMPL_(MathProg)

deliverable within a budget and which meets the demands of
the customers. Our approach goes a step further by providing
a mapping between an actual requirement modelling language
(Techne) to a MIP. We also further elaborate notion of cus-
tomer satisfaction by distinguishing two types of revenues.

In their work, Zhang et al. explored the multi-objective next
release problem by distinguishing the revenue maximization
and the cost minimization [12]. Their work mainly consists of
comparing search techniques for multi-objective optimization
problems. Although separating cost and customer values seems
interesting, our approach can be applied with a profit function
(i.e. a fitness function summarizing revenue maximization and
cost minimization) [7]. Moreover, our work is less focused
on comparing search algorithms but rather on providing a
mapping between goal modelling and MIP.

In their work, Ruhe et al. suggested an approach mixing
what they call the art of release planning and the science
of release planning [13]. It results in a model taking into
account dependencies between features, resource constraints,
urgency of features and different stakeholders point of view.
Our approach differs from theirs because there is no attempt to
balance multiple stakeholders satisfaction and urgency rates.
However, urgency is managed with diminishing values of goals
through time.

Saliu et al. focused on release planning optimization for
evolving systems [14]. They proposed a new release planning
framework that considers the effect of existing system charac-
teristics on release planning decisions.

In their paper, Tonella et al. provides an interactive genetic
algorithm aimed at minimizing the disagreement between a
total order of prioritized requirements and the various con-
straints that are either encoded with the requirements or that
are expressed iteratively by the user during the prioritization
process [15].

In comparison with all previously mentioned work, our
approach is more focused on providing a mapping between
an existing requirement modelling language than a study on
performance of various algorithms. It also simultaneously
provides a release planning (i.e determines priorities) and
select between alternatives while related methods focus only
on one of these aspects.

VII. CONCLUSION AND FUTURE WORKS

This paper suggested a method able to support optimization
of release planning in agile projects. A first contribution was
to suggest modeling of the Agile Requirement Problem with
goal models. A second contribution was a mapping between
the goal model and a Mixed-Intger Program. Eventually,
we briefly presented an implementation of the approach on
AnalyticGraph.com.

Although our optimization problem focuses on business
value delivery (as agile principles prescribes), it also takes
into account implementation effort and feature dependencies
(through inference relationships).

The approach allows each user to focus on their domain,
the product owner defines a product backlog in the form

TABLE 11
SOLUTION OF MYSTERY SHOPPER CASE

[[Sprint 1 [Sprint 2 | Sprint 3 | Sprint 4 | Sprint 5 [Sprint 6 |

Tasks Story Points
T31 25 X
T45 25 X
T4 50 X
T30 50 X
T42 50 X
Sprint Backlog size 50 50 50 50 50 50
Goals Revenue
GO Register visit 200 X X X X X X
G5 Insert xls 0 X X X
G6 Send by mail 0 X
G12 Post on web 0 X X X X X
G16 Register central 100 X X X X X
G23 Insert web 0 X X X
G37 Xplore data 200 X X X X
G120 Get subvention 200 X
S49 User-friendly 500 X
S107 Accessible on many devices 250 X X X
Revenue 400 700 500 550 550 1250
Cumulated Rev. 400 1100 1600 2150 2700 3950
of a goal model (which replaces the traditional list of user [12] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective next
stories), developers identifies implementation tasks to be done release problem,” in Proceedings of the 9th annual conference on
K . . R . Genetic and evolutionary computation. ACM, 2007, pp. 1129-1137.
durlng sprints and evaluate their reqUIred efforts with story [13] G. Ruhe and M. O. Saliu, “The art and science of software release
points. Then the release planning (and consequently priorities) planning,” IEEE software, vol. 22, no. 6, pp. 47-53, 2005.
: : : i [14] O. Saliu and G. Ruhe, “Supporting software release planning decisions
is computed by resolution of the mixed integer program. for evolving systems,” in 29th Annual IEEE/NASA Software Engineering
Workshop. IEEE, 2005, pp. 14-26.
REFERENCES [15] P. Tonella, A. Susi, and F. Palma, “Using interactive ga for requirements

(1]

2

—

[3

[4

(5]

[6

—

[7

—

[10]

[11]

K. Petersen and C. Wohlin, “A comparison of issues and advantages
in agile and incremental development between state of the art and an
industrial case,” Journal of systems and software, vol. 82, no. 9, pp.
1479-1490, 2009.

S. Cavaleri and K. Obt6j, Management Systems: A Global Perspective.
Wadsworth, 1993. [Online]. Available: https://books.google.be/books?
1d=ZAyqQgAACAAJ

F. Paetsch, A. Eberlein, and F. Maurer, “Requirements engineering and
agile software development,” in null. 1EEE, 2003, p. 308.

Z. Bakalova, M. Daneva, A. Herrmann, and R. Wieringa, “Agile require-
ments prioritization: What happens in practice and what is described
in literature,” in International Working Conference on Requirements
Engineering: Foundation for Software Quality. Springer, 2011, pp.

181-195.
A. Cockburn, “Writing effective use cases,” preparation
for Addison-Wesley Longman. www. infor. uva. es/~ mla-

guna/is2/materiales/BookDraftl. pdf, 1999.

1. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne: Towards
a new generation of requirements modeling languages with goals,
preferences, and inconsistency handling.” in RE, 2010, pp. 115-124.

J. Gillain, S. Faulkner, P. Heymans, I. Jureta, and M. Snoeck, “Product
portfolio scope optimization based on features and goals,” in Proceed-
ings of the 16th International Software Product Line Conference-Volume
1. ACM, 2012, pp. 161-170.

V. Mahni¢ and T. Hovelja, “On using planning poker for estimating user
stories,” Journal of Systems and Software, vol. 85, no. 9, pp. 20862095,
2012.

A.J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley, “The next release
problem,” Information and software technology, vol. 43, no. 14, pp. 883—
890, 2001.

Y. Zhang, A. Finkelstein, and M. Harman, “Search based requirements
optimisation: Existing work and challenges,” in International Working
Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 2008, pp. 88-94.

H.-W. Jung, “Optimizing value and cost in requirements analysis,”
IEEE Softw., vol. 15, no. 4, pp. 74-78, Jul. 1998. [Online]. Available:
http://dx.doi.org/10.1109/52.687950

prioritization,” in Search Based Software Engineering (SSBSE), 2010
Second International Symposium on. 1EEE, 2010, pp. 57-66.

https://www.researchgate.net/publication/312485963

