
Dynamic Requirements Specification for Adaptable and Open Service Systems

Ivan J. Jureta, Stéphane Faulkner, Philippe Thiran
Information Management Research Unit (IMRU), University of Namur, Belgium

iju@info.fundp.ac.be, {sfaulkne, pthiran}@fundp.ac.be

Abstract

The Dynamic Requirements Adaptation Method (DRAM)
is suggested to assist existing RE methodologies in updating
requirements specifications at runtime for adaptable and
open service-oriented systems. Updates are needed because
an adaptable and open system continually changes how and
to what extent initial requirements are achieved.

1. Problem

In service-orientation, individual services are “self-
describing, open components that support rapid, low-cost
composition of distributed applications” [5]. An open
service-oriented system may involve a large pool of dis-
tinct and competing services orignating from various ser-
vice providers. To be adaptable, such a system coordi-
nates service provision by dynamically selecting the par-
ticipating services according to multiple quality criteria,
so that the users continually receive optimal results. The
proposal outlined in the remainder resulted from the diffi-
culties we encountered in engineering requirements for an
adaptable and open service-oriented system (AOSS), called
TravelWeb here, which allows users to search for and book
flights, trains, hotels, rental cars, or any combination thereof
through a web interface. Services which perform search and
booking originate from the various service providers that
either represent the various airlines and other companies,
so that TravelWeb aggregates and provides an interface to
the user when moving through the offerings of the various
providers. Each provider can decide what options to offer
to the user: e.g., in addition to the basics, such as book-
ing a seat on an airplane, some airlines may ask for seat-
ing, entertainment, and food preferences, while others may
further personalize the offering through additional options.
We present the architecture and algorithms for TravelWeb
elsewhere [4]. Following any established RE methodol-
ogy (e.g., [2, 1]), a requirements specification for Travel-
Web would be constructed by moving from abstract stake-
holder expectations towards a detailed specification of the

entire system’s behavior. This is not feasible because: (i)
services that may participate are unknown at development
time; (ii) an adaptable system is usually needed when the
environment is unpredictable—we cannot anticipate all pos-
sible operating conditions, and environment and system be-
haviors; (iii) services that will participate in TravelWeb are
not developed by same service providers. We argue that,
when performing the RE of AOSS: (a) the initial specifica-
tion ought to be updated at runtime; (b) the initial specifi-
cation need not be extensive; and, (c) a separation is to be
made in the RE for AOSS according to the various concerns
of the developers of the services and of the AOSS.

The extended version of this paper1 explains what parts
of the initial specification to update and how to update them
at runtime using the Dynamic Requirements Adaptation
Method (DRAM). Here, we outline DRAM.

2 Outline of DRAM

DRAM is not a standalone RE methodology; it integrates
concepts and techniques for defining mappings (called jus-
tified correspondences in DRAM) between fragments of
the requirements specification produced by an existing RE
methodology and service requests. Correspondence ensures
that the stakeholders’ expectations are translated into con-
straints and quality parameters understood by the AOSS.
Correspondence between requests and requirements allows
the requirements specification to be updated to reflect run-
time changes in the system due to adaptability and open-
ness. A justified correspondence φ , ψ exists between a
fragment φ of a usual requirements specification and a ser-
vice request (involving service process descriptions, quality
parameters, and/on user preferences) ψ iff there is a justifi-
cation 〈P, φ , ψ〉, i.e., φ , ψ iff ∃〈P, φ , ψ〉. A justifica-
tion is constructed by applying a justification process (see,
[3] and the extended version of the present paper). Justified
correspondences together with the requirements and service
requests constitute a dynamic requirements specification. A
justified correspondence is used as an update rule: when-

1Available at: http://www.jureta.com/papers/DRAM-RE07.pdf

15th IEEE International Requirements Engineering Conference

1090-705X/07 $25.00 © 2007 IEEE
DOI 10.1109/RE.2007.28

381

Figure 1: Example output of the construction of a justified correspondence in DRAM.

ever we encounter information appearing in a correspon-
dence, we check if the correspondence is maintained; if not,
we update requirements or requests to maintain the corre-
spondence. DRAM uses the following process to build the
dynamic requirements specification:
(1) Starting from the requirements, select a fragment thereof
that has not been converted into a service request fragment.
(2) Determine the service request information that can be
extracted from the given requirements fragment.
(3) Write down the obtained service request information,
along with arguments and justifications used in mapping the
requirements fragment to the request fragment. Each jus-
tified correspondence obtained by performing the step (2)
above is written down as an update rule.
(4) Verify that the new arguments used in the justified corre-
spondence do not defeat available justifications; revise the
old justifications if needed.

As an example (detailed in the extended version), con-
sider the correspondence used in TravelWeb, and shown in
the top of Fig.1. There, we justified the correspondence
using various information from requirements and requests,
along with informal accounts to simplify presentation. Ob-
serve that the correspondence is defeated (labeled “D”), that
is, is not justified because we have evidence (given in the

branches, below the correspondence) that the correspon-
dence does not hold. To make it justified, we would need
to defeat the undefeated argument (bottom-right of the fig-
ure) by providing evidence to the contrary of that argument.

Automation of the various techniques in DRAM is the
focus of current work, namely through patters of justifica-
tions for justified correspondences. For further details on
DRAM and the illustrating examples, the reader is referred
to the extended version of this paper. It is available online,
the url is cited on the previous page.

References

[1] J. Castro, M. Kolp, J. Mylopoulos. Towards requirements-
driven information systems engineering: the Tropos project.
Information Systems, 27(6), 2002.

[2] A. Dardenne, A. van Lamsweerde, S. Fickas. Goal-directed
requirements acquisition. Sci. Comp. Progr., 20, 1993.

[3] I. J. Jureta, S. Faulkner, P.-Y. Schobbens. Justifying Goal
Models. Proc. Int. Conf. Req. Eng. (RE’06), 2006.

[4] I. J. Jureta, S. Faulkner, Y. Achbany, M. Saerens. Dynamic
Web Service Composition within a Service-Oriented Archi-
tecture. Proc. Int. Conf. Web Services (ICWS’07). To appear.

[5] M. P. Papazoglou, D. Georgakopoulos. Service-Oriented
Computing. Comm. ACM, 46(10), 2003.

382

