
Requirements Contracts: Definition, Design, and

Analysis

Ivan J. Jureta
Fonds de la Recherche Scientifique – FNRS, Brussels, Belgium,

Université de Namur, Belgium,
STEMCELL Technologies Inc., Vancouver, Canada
ivan@ivanjureta.com, http://ivanjureta.com

April 30, 2021

Abstract

What are the necessary and sufficient conditions for a proposition to
be called a requirement? In Requirements Engineering research, a propo-
sition is a requirement if and only if specific grammatical and/or commu-
nication conditions hold. I offer an alternative, that a proposition is a
requirement if and only if specific contractual, economic, and engineering
relationships hold. I introduce and define the concept of ”Requirements
Contract” which defines these conditions. I argue that seeing requirements
as propositions governed by specific types of contracts leads to new and
interesting questions for the field, and relates requirements engineering
to such topics as economic incentives, interest alignment, principal agent
problem, and decision-making with incomplete information.

Contents

1 Background 2

2 Problem 3

3 Solution Outline 4

4 Paper Outline 5

5 Rationale 6
5.1 Background to the Rationale . 6
5.2 Rationale for Contractual Relationships 7

5.2.1 Prioritisation . 8
5.2.2 Acceptability . 10
5.2.3 Validation . 11

5.3 Rationale for Economic Relationships 12

1

ar
X

iv
:2

10
4.

14
11

0v
1

 [
cs

.C
Y

]
 2

9
A

pr
 2

02
1

http://ivanjureta.com

6 Solution 13
6.1 Departure . 14
6.2 Network . 14
6.3 Nodes and Links . 14
6.4 Roles . 15
6.5 Roles and Parties . 15
6.6 Right to Request . 15
6.7 Obligation to Satisfy . 16
6.8 Obligation to Validate . 17
6.9 Imperfect Transfer . 17
6.10 Handling Failure . 18

7 Alignment 18
7.1 Interests . 18
7.2 Simple Case of Conflict of Interest 20
7.3 Interest Cases . 22

8 Conclusions and Open Questions 23

1 Background

In research on Requirements Engineering, sentences such as “the system should
do A”, “the software should do B”, or “the system must never do C” are called
requirements. This is an example:

A meeting scheduler should know the constraints of the various par-
ticipants invited to the meeting within some deadline d after invita-
tion. [60]

Requirements Engineering, as a research discipline, came out of the need to
be clear and rigorous about how to define, document, change requirements for
software and hardware, and how to evaluate if and how much requirements are
satisfied. But requirements are not confined to software and hardware. Law
defines requirements on legal entities, governments on the behaviour of citizens,
schools on the behaviour of students, and so on.

When a proposition is called a requirement, it conveys what someone ex-
pects, needs, wants, asks for.

This general idea that requirements set expectations about the thing to be
made or bought, and/or of behaviour or competence to exhibit1 has been around
ever since the early research publications in the field. Ross and Schoman wrote
“requirements definition is a careful assessment of the needs that a system is to

1Consider, for example, the following passage on Canadian citizenship requirements (see
https://www.cic.gc.ca/: “To become a Canadian citizen, you must: be a permanent resi-
dent, have lived in Canada for 3 out of the last 5 years, have filed your taxes (if you need
to), pass a test on your rights, responsibilities and knowledge of Canada, prove your language
skills”. Those requirements are not about things to make or buy, but on competences and
behaviours.

2

https://www.cic.gc.ca/

fulfil. It must say why a system is needed, based on current or foreseen condi-
tions” [54]. Brooks claimed that “[the] hardest single part of building a software
system is deciding precisely what to build” [11]. Zave wrote that “Requirements
engineering is the branch of software engineering concerned with the real-world
goals for, functions of, and constraints on software systems” [63] Hsia, Davis,
and Kung wrote that “Requirements engineering is the disciplined application
of proven principles, methods, tools and notations to describe a proposed sys-
tem’s intended behavior and its associated constraints” [31] Continuing Ross
and Schoman’s line of thought, in arguing why it matters to think about goals
of a system-to-be, van Lamsweerde claimed that “goals provide the rationale for
requirements [...] a requirement appears because of some underlying goal which
provides a base for it” and he saw goals as that which relates the system to the
organization which uses it [59]. Sommerville argued that “before developing any
system, you must understand what the system is supposed to do and how its
use can support the goals of the individuals or business that will pay for that
system” [58].

2 Problem

We can have an arbitrary number of propositions that refer to what is needed,
wanted, desired. Such proposition are common; they are there when people
complain, for example, as well as when they set goals to achieve, or rules for
how something should or shouldn’t be done.

This abundance of requirements-like propositions begs the following ques-
tion: Are all these propositions always requirements? Or you can look at the
same problem the other way: How does a proposition become a requirement?
These questions are the focus of this paper.

If grammatical mood fully determines whether a proposition has the role of
requirement, then the only condition that should be true for a proposition p to
get that role, is that p is communicated in the right grammatical mood. This is
what Michael Jackson argued in several papers in the 1990s [33, 34], including
in the influential “Four dark corners” with Pamela Zave [64], and later, “A
Reference Model for Requirements and Specifications” [27] with Carl Gunter,
Elsa Gunter, and Pamela Zave.

If the type of speech act determines if a communicated proposition gets the
role of requirement, then all that’s needed for p to get that role, is that the right
speech act is used. John Mylopoulos and I supported this position with various
co-authors in our publications on the core ontology for requirements engineering
[35, 41] and on the Techne family of requirements modelling languages [38, 39].

If the assignment of a goal to a software agent is enough for a the goal to
become a requirement, then as long as the goal is refined to such extent that it
can be satisfied by functionality implemented by software, this is enough for it
to be called a requirement. That is Axel van Lamsweerde’s position – “[a] goal
under responsibility of a single agent in the software-to-be becomes a require-
ment whereas a goal under responsibility of a single agent in the environment of

3

the software-to-be becomes an assumption” [59]. A goal for van Lamsweerde is
exactly what Jackson called requirements (see above): “A goal is an objective
the system under consideration should achieve. Goal formulations thus refer to
intended properties to be ensured; they are optative statements as opposed to
indicative ones, and bounded by the subject matter” [59].

Other than minor differences2, all three positions revolve around the same
idea: a proposition is called a requirement, if it is such that we understand it as
referring to something that is needed, desired, or otherwise asked for; that seems
to be both the necessary and sufficient condition for a proposition to become a
requirement.

What is wrong with the above? In simplest terms, you can want and say
that you want p to be satisfied, yet no one may need to invest effort to do so.
This ties closely with such intuitively appealing and simple observations as that
we cannot satisfy all needs we may think of. As the Rolling Stones say, you
can’t always get what you want.

More specifically, the problem is that the position above – that all we need
for a proposition to become a requirement is that it is in the right grammatical
mood or speech act – clashes with the following common sense observation.

A proposition p, which may refer to something I would like to see
satisfied in the future, cannot be a requirement for you to satisfy just
because I wish this to be so and I say that I wish it to be so.

Grammar and speech acts alone are not enough for someone to satisfy that
which another person said they want, need, or desire. Something more is needed,
something that will lead others to want to invest effort to satisfy these expressed
goals, needs, or whatever we want to call them. It follows that propositions
become requirements for some other reasons than simply because someone wants
them to be satisfied.

The problem, then, is this: What are the necessary and sufficient conditions
for a proposition to become a requirement?

3 Solution Outline

The following paragraph summarises what is missing when thinking about re-
quirements as propositions communicated to convey needs.

For a proposition p to become my requirement for you, I have to
have been given specific rights, which I can then exercise to give p
the role of requirement, and you accept the obligation to bring about
p. Both you and I should get value out of this arrangement: I will

2The only one that stands out is van Lamsweerde’s constraint to be able to assign a goal to
a software agent, which is essentially about level of detail, i.e., he asks to have the goal refined
up to a threshold level of detail tied to the feasibility of software to implement functionality
that supports the original goal (see, e.g., [17]). This makes no difference, because he still sees
goals the same way Jackson sees requirements.

4

if my requirement is satisfied, and you will if there is something you
get out of it, i.e., there is some transfer of value to you for satisfying
that requirement. Finally, you should be confident enough that you
will be able to satisfy my requirement through effort that you can
invest, given the value that you expect.

To take the above seriously is to accept, as I will argue, that a proposition
p gets the role of requirement within a nexus of contractual, economic, and
engineering relationships. There needs to be a contract which distributes rights
and responsibilities, and makes economic relationships binding for the parties
involved; there need to be economic relationships, that is, expectations of getting
value for anyone to want to enter the contract; and there have to be, broadly
speaking, engineering relationships satisfied, between the understanding of what
requirements are about, and assumptions of what should be designed, built, and
eventually used or run to satisfy them.

As a result, a requirement is not just a proposition denoting desired future
conditions, a proposition that is the content, so to speak, of what someone may
wish. We cannot say that a proposition is a requirement at all. The proposition
remains a proposition, but can be given the role of requirement by those who
enact roles defined in a contract, exercise their rights and act according to their
obligations. A proposition maintains the role of requirement as long as the
contract remains applicable. Requirements, in short, come out of contracts, not
wishes.

4 Paper Outline

Why should you take the solution outline above seriously? Why do we need
contracts when focusing on Requirements Engineering? Can’t we deal with the
engineering of requirements while ignoring the contracting around their satis-
faction? Section 5.2 focuses on these questions, and develops the argument that
the engineering relationships for a proposition to have the role of requirement
are inseparable from the contractual ones.

If the engineering and contractual relationships are inseparable, then can’t
we at least keep economic relationships out of the picture? Can we abstract
those away and deal with them separately? Section 5.3 is dedicated to these
questions, and concludes that contractual and economic relationships are insep-
arable. Therefore, if we take engineering and contractual relationships, then we
need to take economic ones along as well.

Section 6 gives the necessary and sufficient conditions for a proposition to
get the role of requirement.

An important implication of seeing requirements as roles resulting from a
nexus of contractual, economic, and engineering relationships, is that the so-
called “requirements problem” looks like a limited treatment of a more com-
plicated problem. I will argue that, unfortunately, we cannot be defining and
solving that engineering problem without defining and solving the contractual

5

and economic ones with it. One of the interesting, and I believe constructive
consequences is that we need to have a broader and richer discussion in Re-
quirements Engineering research, one which does not set aside economic and
contractual relationships and constraints that affect so many parameters of how
the engineering problem gets formulated and solved.

The paper closes with a discussion of the weaknesses of the proposal in this
paper, and mentions open questions that I encourage colleagues to consider.

5 Rationale

To argue that requirements cannot exist without contractual and economic re-
lationships, we take a step back and recall the basic ideas in Requirements
Engineering research, on what the central problem is, i.e., what you are up
against when doing Requirements Engineering.

5.1 Background to the Rationale

Requirements Engineering focuses on eliciting, modelling, and analysing the
requirements and environment of a system-to-be in order to design its specifi-
cation.

It is on the basis of its specification that the system is built, updated,
changed, its new releases planned, made, announced, rolled out. Specifications
can take different forms, ranging from minimalist to-do lists that hint at expec-
tations and subsume implicit engineering solutions, to elaborately structured
documentation on responsibilities of positions in the value chain, guidelines for
employee coordination and collaboration, as well as formal software specifica-
tions made for use with a model checker.

The design of the specification, usually called the Requirements Problem,
is a complex problem solving task, as it involves, for each new system-to-be,
the discovery and exploration of, and decision making in, new and ill-defined
problem and solution spaces.

Difficulties involved in solving an Requirements Problem instance are illus-
trated by the variety of topics studied in Requirements Engineering research,
such as requirements elicitation [24, 30, 18], categorization [16, 64, 35], vagueness
and ambiguity [49, 46, 40], prioritization [42, 5, 29], negotiation [45, 6, 36], re-
sponsibility allocation [16, 13, 22], cost estimation [7, 10, 55], conflicts and incon-
sistency [50, 28, 60], comparison [49, 46, 47], satisfaction evaluation [9, 49, 43],
operationalization [23, 22, 20], traceability [25, 51, 15], and change [14, 62, 12].

The de facto default view in Requirements Engineering, is that the specifi-
cation of the solution to build or buy, is produced incrementally, starting from
a limited set of incomplete, inconsistent, and imprecise information about the
requirements and the system’s operating environment, and that each design
step reduces incompleteness, removes inconsistencies, and improves precision,
towards the specification of the system [8, 16, 26, 50, 21, 64, 59, 13, 53, 38, 20].

6

This important and general conceptualisation of the aim in Requirements
Engineering is most clearly formulated in Zave & Jackson’s “Four dark corners
of requirements engineering” [64] mentioned in Section 2. Their view, denoted
ZJ hereafter, is echoed in some of the most influential research in the field, which
both preceded and followed the said paper, including, for example, contributions
from Boehm et al. [8, 6], van Lamsweerde et al. [16, 17, 60, 61, 59, 46],
Mylopoulos et al. [49, 26, 13], Robinson et al. [53], Nuseibeh et al. [50, 32], to
name some.

According to the ZJ view, in any concrete systems engineering project, Re-
quirements Engineering is successfully completed when the following conditions
are satisfied [64]:

1. “There is a set R of requirements. Each member of R has
been validated (checked informally) as acceptable to the cus-
tomer, and R as a whole has been validated as expressing all
the customer’s desires with respect to the software development
project.

2. There is a set K of statements of domain knowledge. Each
member of K has been validated (checked informally) as true
of the environment.

3. There is a set SS of specifications. The members of S do not
constrain the environment; they are not stated in terms of any
unshared actions or state components; and they do not refer to
the future.

4. A proof shows that K,S ` R. This proof ensures that an
implementation of S will satisfy the requirements.

5. There is a proof that S and K are consistent. This ensures that
the specification is internally consistent and consistent with the
environment. Note that the two proofs together imply that S,
K, and R are consistent with each other.”

If the satisfaction of these conditions marks the end of Requirements En-
gineering in any systems engineering project, then we can give a compact for-
mulation of the default problem that Requirements Engineering should solve,
which we call the Default Requirements Problem hereafter.

Default Requirements Problem: Given a set R of requirements, and a set K
of domain knowledge, find a specification S, such that S satisfies the following
conditions:

1. There is a proof of R from K and S, written K,S ` R,

2. K and S are consistent, written K,S 6` ⊥.

5.2 Rationale for Contractual Relationships

Why are contractual and economic relationships absent in the mainstream ac-
count of the requirements problem? It is either that contracts and economics do

7

not matter in the Default Requirements Problem, or that there is a lot to say
about that problem even without considering the two other dimensions. Neither
of these positions is satisfactory. To see why, we need to consider three central,
recurrent questions in Requirements Engineering:

1. How to decide the relative importance of requirements? This is called the
prioritisation problem hereafter, and is discussed in Section 5.2.1.

2. How to determine if satisfying a requirement is justified, i.e., that we have
good enough reasons to believe that that requirement should be satisfied?
This is called the acceptability problem (Section 5.2.2).

3. How to determine if and how well a requirement is satisfied? This is the
validation problem (Section 5.2.3).

In the remainder of this section, I will argue that each of these problems is
in fact a problem that involves contractual, economic, and engineering relation-
ships. None of them can or should be seen simply as engineering problems.

5.2.1 Prioritisation

The prioritisation problem reflects the inability to simultaneously satisfy all the
requirements that we may want to satisfy. The prioritisation problem asks how
to decide which ones to satisfy first.

How much we can prioritise depends on what the requirements are about,
how much resources we can commit, and throughput, or roughly speaking, how
much of the requirements can be satisfied by how much resources. This, in
turn, begs the question of what we expect to gain from that commitment, and
therefore, there are economic relationships at play when we do requirements
prioritisation [56, 44, 3, 52].

Suppose that you expected the most competent people in the world to work
to satisfy your requirements. Would this influence the content of the require-
ments that you would ask them to satisfy? Would you ask for different require-
ments if this were not the case, if you in fact knew very little of who would work
on them, and what their competence is?

In Hertz Corporation v. Accenture LLP [2], one of many issues that the car
rental company raised was that Accenture misled it into believing that “the best
talent in the world” would work on satisfying the requirements that Hertz had
at the time. Paragraph 4 of the Complaint (April 19, 2019) reads as follows:

“After Accenture put on an impressive, one-day presentation for the
Hertz team that included a demonstration of the transformed Hertz
digital experience, Hertz selected Accenture to design, build, test,
and deploy Hertz’s new website and mobile applications (or ‘apps’).”

The Memorandum & Order (October 25, 2019) adds detail:

“Ultimately, Hertz hired Accenture following a one-day marketing
presentation, in which Accenture touted its world-class expertise in

8

website and mobile application development. The presentation con-
tained slides stating that Accenture’s staff consisted of ‘800 [e]xperts’
who comprised ‘[t]he best talent in the world.’ The presentation also
stated ‘[w]e’ve got the skills you need to win’ and that Accenture
would ‘put the right team on the ground [from] day one.”’

Hertz claimed that the presentation was misleading, and Accenture’s re-
sponse was that it is “non-actionable puffery”. This is what the Court concluded
as well:

“Accenture’s representation that it housed ‘800 [e]xperts’ amounting
to ‘[t]he best talent in the world,’ along with its promise that it
had ‘the skills you need to win’ and would ‘put the right team on
the ground [on] day one,’ are quintessential examples of puffery.
Accordingly, this Court concludes that the alleged misstatements in
the marketing presentation are non-actionable.”

How does this relate to prioritisation? If one prioritises assuming that the
best talent would be doing the work, one does it differently than if different
talent, so to speak, is expected to do the work: the best talent would presumably
do more and better than anyone else.

More importantly, if this was not in a marketing presentation, but was in
some more accurate manner defined in the contract, the contract would not only
influence what gets prioritised, but also what enters prioritisation in the first
place. Going back to Default Requirements Problem, the content of R would be
influenced by the contract, and since the contractual relationships are outside of
the definition of Default Requirements Problem, it can only be part of a broader
problem to solve.

The incentives that a contract defines, or the economic relationships it sets
up, also influence how prioritisation will be done.

Suppose that a contract A pays out the same amount to those satisfying
requirements regardless of the expected value of outcomes of different require-
ments. This would be the case of developing, say, software which streams video
online, but getting paid for hours spent making it, regardless of how much it is
actually used once up and running. By expected value of outcomes of satisfying
a requirement, I mean the value that the system-to-be is expected to generate
at run-time if it is in fact designed to satisfy that requirement.

Suppose that in another contract B, their payout is proportional to actual
value at run-time. In the same example, those developing it would be paid
relative to advertising revenue, for example, which in turn is proportional to
number of times each video is viewed (or some other metric correlating with
usage).

This difference between A and B exists in, for example, in employment
contracts for those who accept the obligation to satisfy requirements: case A
would be a contract that includes neither shares, nor rights to shares in equity
of the legal entity (or in revenue, as in the case of royalties) that commercialises
the system-to-be. In case A, there is no reason for them to prioritise or insist to

9

prioritise requirements which may be more difficult to satisfy, but could generate
higher benefits, while they may think about this in another way if they can claim
some of these benefits, as in case B.

In short, we cannot do requirements prioritisation while ignoring the con-
tract. If you do, as Hertz did, you take on substantial risks.

5.2.2 Acceptability

A contract could specify that the party which has the rights to give require-
ments can indeed give any requirements, i.e., give the role of requirement to
any proposition.

If I have that right by that contract, then I can turn any proposition into
a requirement, including something as ludicrous as “green cheese should grow
on the Moon”. But even if the contract was written in such a way, and there
was someone as delusional as to accept the obligations in it, then I could ignore
any complaints they may have. That contract would guarantee a priori that all
propositions I turn into requirements are acceptable as requirements, regardless
of what these propositions are about. This is not realistic.

One contractual setup that I have experienced in practice in the past is
very much the one that seemed to be in place between Hertz and Accenture:
Hertz and Accenture had, according to the Court Opinion and Order (March 3,
2020), a “Consulting Services Agreement” since 2004, and “[t]he Project was to
be conducted in phases, and the services and deliverables for each phase were,
in turn, specified in letters of intent (‘LOIs’) and corresponding statements of
work (‘SOWs’).” In such a setup, the SOW would describe those requirements
that the party which should satisfy indeed accepts to satisfy. Writing SOWs,
in other words, comes after an assessment – however well or badly done – of
clarity, completeness, and feasibility of producing the solution which is expected
to satisfy the propositions suggested to be treated as requirements (or a subset
thereof).

I have also been involved on either side of very different contracts, where the
contract does not presuppose the existence of a comprehensive SOW. In place
of specifying requirements on the deliverable (or solution to make to satisfy
the requirements), it specifies constraints on the process which the parties go
through, in order to define requirements after the contract is signed. In place
of buying a solution, one buys time from experts who are expected to be able
to design and deliver the solution, even if the specifics of that solution, or of
the problem to solve may be elusive at contracting time. One of the twelve
principles in the Agile Manifesto reads “[t]he best architectures, requirements,
and designs emerge from self-organizing teams” [4], something that has to be
acknowledged through a contract: in the first case above, where a detailed SOW
is needed and requirements planned ahead, this principle cannot be satisfied and
it is the contract that makes it unsatisfiable.

The specifics of the acceptability problem that we will face in a given situ-
ation can be determined by the contract. For example, the contract may say
that any proposition is acceptable as long as it is given by those with the rights

10

to confer the role of requirements to propositions. Another contract may ask
that some evidence should be given for the acceptability of requirements, and it
would have to define what counts as evidence. A third contract might say that
any proposition given up to a specific date can be given the role of requirement,
but not past that date. A fourth contract might not specify that date. Consider
how different these are, and the extent to which they shape the requirements
engineering process that we will have to use to eventually satisfy the require-
ments. In the third contract, we might find the waterfall process good enough.
The fourth contract makes waterfall a more difficult process choice than one
inspired by the Agile Manifesto.

In conclusion, we cannot ignore the contract when picking the requirements
engineering process, and specifically how we decide if a proposition can have the
role of requirement.

5.2.3 Validation

The validation problem concerns how you determine if a requirement is satisfied,
and how well it is satisfied. If the contract specifies how this should be done,
then the requirements engineering process cannot ignore it. Paragraph 7 in the
Complaint that Hertz filled against Accenture reads as follows:

“Hertz relied on Accenture’s claimed expertise in implementing such
a digital transformation. Accenture served as the overall project
manager. Accenture gathered Hertz’s requirements and then devel-
oped a design to implement those requirements. Accenture served
as the product owner, and Accenture, not Hertz, decided whether
the design met Hertz’s requirements.”

If the contract specified that Accenture validates the requirements it im-
plements, then that contract determines a key property of the requirements
engineering process between these two parties. The point, again, is that we
cannot dissociate how one does requirements engineering from the content of
a contract which determines who has the right to give propositions the role of
requirements.

How does this tie to the Default Requirements Problem, the engineering
problem? The issue is who is accountable for the proof that K,S ` R. At first
sight, this should not matter; after all, it is a proof and if it is there, anyone
can follow the steps in it and see for themselves. The problem, however, is that
proof rests on only those relationships between propositions in K, S, and R
which have been formalised and appear in there. For example, you can have
K = {p1, p1 ∧ p2 → p3}, S = {p2} and R = {p3}, and it won’t really matter
what each of these is about; you will have K,S ` R. At the same time, p1 may
be about green cheese, p2 about pink clouds, and p3 about a property of a car
rental company website.

11

5.3 Rationale for Economic Relationships

It may seem from the above that there are two ideas that I am tying to the con-
cept of requirement, one being that there must be a contract, and the other that
there must be some economic relationships, some expectations and exchange of
value between the parties involved.

These are not separate ideas, and we therefore cannot say that there is an
engineering problem, to which I am tying a contracting one, and then a third,
economic one - the contract and economics are so closely tied together that we
cannot take one and ignore the other. Why is this so? The obvious idea is that
there is no acceptance of obligation without expectation of value in return (ex-
cept under duress, which we leave aside). Importantly this observation matches
the central tenet of contract law, that contract establishes chosen obligation.

“[C]ontracts [...] arise through an exchange of promises. This is in-
scribed in legal doctrine, in the principles that contracts are created
through offer, acceptance, and consideration. An offer, according to
the U.S. second Restatement on Contracts, ’is the manifestation of
willingness to enter into a bargain, so made as to justify another
person in understanding that his assent to that bargain is invited
and will conclude it. (R2 Contracts: §24)’ ” [48]

For a proposition p to get the role of requirement, we need parties willing to
enter the bargain, whereby there will be at least one such party that will expect
p to be satisfied through this bargain, and another which expects to get value
in exchange for satisfying p.

“To establish a contract, an offer must be met with an appropriate
acceptance, characteristically ’a manifestation of assent to the terms
[of the offer] made by the offeree in a manner invited or required by
the offer. (§50)” [48]

For p to be a requirement, then, we need a party which accepts the offer.

“These requirements entail that all orthodox contracts contain promises.
But not all promises establish contracts, among other reasons be-
cause the law further requires that contracts be supported by good
consideration. The consideration doctrine, in its modern form, adds
a bargain requirement to contract formation. The Restatement says
that

‘[t]o constitute consideration, a performance or a return promise
must be bargained for’

and adds that

‘[a] performance or return promise is bargained for if it is sought
by the promisor in exchange for his promise and is given by the
promisee in exchange for that promise. (R2 Contracts: §71)’

Contracts, that is, must arise not out of a simple, gratuitous promise,
but rather out of an exchange of promises.” [48]

12

Finally, then, we do not have promises going in one direction only. Those
asking for p to be satisfied need to promise, at the very least, that value will be
given to those who promise to satisfy p, i.e., to perceive that satisfying p is a
requirement for them.

But don’t we have promises when, for example, I ask you to give me your
book, offer you $20 in exchange, and you accept? Am I giving a requirement?
It is an exchange, but does it require a contract?

“[T]he main economic function of contract law is to assist trans-
acting parties who face difficulties associated with non-simultaneous
transactions. Stated differently, contract law facilitates deferred ex-
changes. An example is useful here. Suppose that you agree to build
me a boat in exchange for £10,000, payable in advance. Absent a
law of contract, there is an obvious risk that, having received the
£10,000, you will renege on our deal and pocket the money.” [57]

When we talk about requirements which involve making something – and
we say a new system or a system-to-be typically in requirements engineering –
then this is a deferred exchange, and it makes little sense therefore to ignore
ensuring a contractual framework and being clear about economic relationships.

In conclusion, contract, economics and requirements are inseparable.

6 Solution

The necessary and sufficient conditions for a proposition p to have been given
the role of a requirement are as follows.

1. There is a so-called Requirements Contract, which defines

(a) the right to give propositions the role of requirements, called the right
to request hereafter,

(b) the obligation to satisfy requirements,

(c) the obligation to validate if a product satisfies requirements,

(d) the obligation to remunerate satisfaction of requirements,

(e) the obligation to remunerate validation,

(f) the right to request remuneration for satisfying requirements,

(g) the right to request remuneration for validating requirements.

2. The Requirements Contract is enacted, i.e., there is a party for each role
that the contract creates by defining the respective rights and obligations.

3. Rights and obligations in the Requirements Contract are, respectively ex-
ercised and discharged, and specifically, the party which holds the right
to request indeed requests that p be satisfied, and thereby, p gets the role
of a requirement.

13

6.1 Departure

This approach to defining how a proposition gets to be called a requirement is
different from related work mentioned so far in this paper. There is no need
to be concerned with grammatical mood, speech acts, or where the proposition
appears in the refinement tree. The concept of requirement is separated from
intentional states and folk psychology; this addresses the problem I raised else-
where [37]: intentional states cannot be known (i.e., while you may experience
or observe your intentional states, you cannot do so with mine, nor can I do so
with yours), so any appeal to intentional states as reasons for a proposition to
be a requirement essentially asks you to assume that there is something behind
the requirements that you have no way of observing, or otherwise accessing. It
puts a veil of mystery where there is no need for one. Instead, the explanation
for a proposition to have the role of requirement is that there is an enacted
contract and parties exercising their rights and discharging their obligations.

The solution above emphasises the contract in the first condition. That first
condition is not enough, however.

The contract must be enacted, the rights and obligations in it should be,
respectively, accepted and discharged. This is captured in the second and third
conditions. This is also where economic relationships come into play: if there
are no expectations of value from making the various promises formalised in the
contract, then there will be no one to enact it.

6.2 Network

The necessary and sufficient conditions given earlier can be represented as a
network of relationships over expectations, rights, obligations, actions, and out-
comes. That representation is called the Requirements Contract Network (also
only “Network” hereafter). I use the Network to discuss alignment of interests of
the parties in the Requirements Contract, and how the contract can be designed
to support that alignment.

The Network is shown in Figure 6.5. Each node is an expectation, action, or
outcome. The Requirements Contract itself appears through black nodes, which
represent actions involving rights and obligations that the contract defines. The
network is arranged in the Figure to show sequence over time, with time passing
from left to right.

6.3 Nodes and Links

In the Network, everything starts from the expectations, which lead to actions
related to the Requirements Contract, namely the acceptance of rights and obli-
gations, which are, respectively, exercised and discharged through subsequent
actions. Outcomes result from actions.

Each link reads ”is necessary for”, a relationship indicating that the target
of the link cannot happen if the source of the link hasn’t. Taken together, all
links targeting a specific node are the set of sufficient conditions for what that

14

node describes: expectations to be had, actions to be executed, or outcomes to
occur.

6.4 Roles

Each expectation, action, and outcome is associated with a role. Roles are
placeholders for parties who will fill them when an actual Requirements Contract
is enacted. Moreover, roles shown in Figure 6.5 are merely one way in which
expectations, actions, and outcomes can be grouped together and assigned to
parties. Three roles are shown, and should be read as follows.

• Requester role, labelled Q in the Figure, is to be filled by the party which
has the expectation of getting value if her requirements are satisfied.

• Maker role, labelled M, is responsible for making the product that should
satisfy requirements; the party in this role expects value from doing so.

• Evaluator role, labelled V, is responsible for evaluating if the product
satisfies requirements, and the party in this role expects value from doing
the evaluation.

6.5 Roles and Parties

It is also not necessary that each role is filled by a different party. For example, in
both Hertz Corporation v. Accenture LLP and GB Gas Holdings Ltd v Accenture
(UK) Ltd & Ors [1], Accenture filled itself both the Maker and Evaluator roles.
Whether that is the best choice is a separate question; there is a lot to say
about how many parties you may want to involve in a Requirements Contract,
depending on which role you have; I return to this in Section 7.

6.6 Right to Request

The starting point is the expectation of value from having requirements satisfied
(denoted ER in the Figure). There is no reason for the Requirements Contract
to exist if there is no such expectation. In order for a party to accept the
right to request, RtR, and provide requirements that need to be satisfied, three
conditions need to hold:

• The party which is to accept the right to request has the expectation of
value from seeing those requirements satisfied (ER),

• A party accepts the obligation to satisfy requirements (OtR),

• A party accepts the obligation to validate if requirements are satisfied
(OrV).

15

Expectation, right,
obligation, action, or
outcome

V

V

Q

V

V

V

QQ

V

V
V

M

QQQ

M

M

M

M

QQ

Symbols Necessary for

Expect value from
requirements being

satisfied
ER

Accept the
Right to Request

RtR

Accept the
Obligation to
remunerate
satisfaction

OtRS

Accept the
Obligation to
remunerate
validation
OtRV

KR, RRExercise the Right to
request

A(RtR)

Discharge the
Obligation to
remunerate
satisfaction
A(OtRS)

Discharge Obligation
to remunerate

validation
A(OtRV)

Experience value
from the investment

to design, make,
release a solution to
satisfy requirements

VSExpect value from
the investment to

satisfy requirements
EP

Accept the
Obligation to Satisfy

Requirements
OtR

KP, RP,
SP, PP

Discharge the
Obligation to satisfy

requirements
A(OtR)

Accept the Right to
request

remuneration for
satisfying

requirements
RtRS

Exercise the Right to
request

remuneration for
satisfying

requirements
A(RtRs)

Discharge the
Obligation to validate

the solution
A(OtV)

Accept the
Obligation to validate

the solution
OtV

Expect value from
the investment to

validate the solution
EV

Accept the Right to
request

remuneration for
validating the

solution
RtRV

Experience value
from the investment

to validate if the
solution satisfies

requirements
V(A(OtV))Exercise the Right to

request
remuneration for

validating the
solution

A(RtRV)

KV, RV,
SV, PV

Validation concludes
that the solution

satisfies
requirements

Validation concludes
that the solution
does not satisfy

requirements

Experience value
from requirements

being satisfied
VR

... Q Requester role M Maker role V Evaluator role

Figure 1: Nexus of rights, obligations, actions, expectations, and outcomes
subsumed by a Requirements Contract

6.7 Obligation to Satisfy

No one will accept the obligation to satisfy requirements (OtR) if they lack an
expectation of value from doing so (EP) and an idea of what the requirements
and assumptions around them may be; the latter comes from having at least
some requirements and assumptions communicated by the party which accepted
the right to request (the party having the right to request should also exercise
that right).

The interplay between knowing requirements, and accepting the obligation
to satisfy requirements, is captured in two ways. The first is the need for the
right to request to be exercised, in order to accept the obligation to satisfy re-
quirements (link from A(RtR) to OtR). The second is the overlap of acceptance
of the right to request with the acceptance of the obligation to satisfy require-
ments, and then the overlap of the latter with the exercising of the right to
request.

16

6.8 Obligation to Validate

Same applies to validation, in that one needs to expect value from doing it (EV)
and know at least some of what they are getting themselves into (the right to
request needs to be exercised), in order to accept the corresponding obligation
(OtV).

In addition, to accept the obligation to satisfy requirements OtR), the party
needs to have the right to request remuneration for the investment that she
will have to make to actually do so (RtRS), i.e., needs a way to request value.
At the same time, it will make sense for her to accept that right to ask for
remuneration if someone else accepts the obligation to provide it (OtRS). Note
how this creates a nexus that links expectations to the obligations and rights in
the Requirements Contract.

We have the analogous situation for validation. For someone to accept the
obligation to validate if requirements are satisfied (OtV), she needs to accept
the right to request remuneration (RtRV), and thereby be able to request value
she expects. In turn, a party needs to accept the obligation to provide that
remuneration for having validated if requirements are satisfied (OtRV).

All relationships identified above mean that expectations need to be there, as
well as rights and obligations accepted, before the Right to request is exercised,
and requirements are given.

6.9 Imperfect Transfer

The party which holds the right to request will exercise that right and provide
two sets of propositions:

• A set KR of propositions that convey this party’s understanding of her
current situation, one which gave rise to her requirements, and

• A set RR of propositions that, by exercising the Right to request, this
party gives as requirements.

As different parties provide and satisfy requirements, communication be-
tween them means that there is a difference between one’s assumptions and re-
quirements and other’s understanding of these assumptions and requirements.
This may be, e.g., because of incompleteness, vagueness, ambiguity, or other
deficiencies which come from the impossibility to be perfectly clear and compre-
hensive in providing all the assumptions and all the requirements that one may
want to provide, or considers implied in that which one does in fact provide ex-
plicitly. It goes back to the distinction between explicit and implicit knowledge
[19].

The implication here, is that KR and RR are one party’s, while the other
will work on something more or less different. Specifically, the party which
discharges the obligation to satisfy requirements, will have the assumptions KP,
have understood requirements RP. As the output of this party’s work, we have
the specification of the product intended to satisfy requirements once in use,

17

SP, and the product itself PP. (The difference between SP and PP is that the
former is the blueprint of the thing, and the latter the thing itself.)

KP,RP,SP,PP are the outputs of the investment to satisfy the requirements.
In order to discharge the obligation to validate the product (A(OtV)), the

party who accepted to do this, will do it on the basis of its own interpretation
of these outputs, namely KV,RV,SV,PV. Once it discharges this obligation, that
party will exercise its right to request remuneration (A(RrRV)), which leads to
it to experience value (denoted V(A(OtV)) in Figure 6.5).

The result of validation will be either that the product does satisfy require-
ments, or that it does not. If it does, the party who expected value from having
requirements satisfied will experience value (denoted V(PR)). In addition, the
party who expected value from satisfying requirements will experience some
value (denoted V(A(OtR)).

6.10 Handling Failure

If validation leads to the conclusion that the product does not satisfy require-
ments, we need to return to the Requirements Contract, and the rules it specifies
around the handling of exceptions, including failure of this kind. I leave these
out of scope in this paper; one option is that failure to satisfy requirements leads
to going back to exercising the right to request (A(RtR)).

7 Alignment

What are the interests of each party that decides to accept its rights and obliga-
tions in the Requirements Contract? Are these interests aligned? When are they
aligned? What if one is pursuing actions which improve its outcomes, but in
doing so do not improve those of others? Why would they not be aligned? Is it
possible to design the Requirements Contract in ways that improve alignment?

Alignment is discussed in three steps in this Section. Firstly, we need to make
assumptions about the interests that each party in the Requirements Contract
may have. From those assumptions, we can catalogue sources of misalignment,
which can be shown using the Network in Figure 6.5. Finally, we can discuss
how the Requirements Contract can be designed to reduce the likelihood of
specific types of misalignment to occur.

7.1 Interests

Why would a party accept rights and obligations in a Requirements Contract?
According to the Network in Figure 6.5, the answer is as follows.

• There is a party which expects value if requirements are satisfied, ER, and
is willing to invest to get this value – both satisfaction of requirements,
and evaluation (validation) of the product need to be remunerated.

18

• There is a party which expects value EP because it invests its own resources
to satisfy requirements by designing, making, and delivering a product to
the party which had requirements in the first place.

• There is a party which expects value EV because it invests its own resources
in evaluating if the product satisfies requirements.

To simplify writing, I will refer to these parties through the roles they would be
filling in the Network in Figure 6.5: Requester expects ER, Maker expects EP,
and Evaluator expects EV.

What does expected value depend on? Each party needs to make an invest-
ment in order to produce that which eventually yields value for them. Thus,
at the very least, expected value will be a function of expected benefits and
expected costs; let’s write these as follows.

ER = E(BR)− E(CR) (1)

EP = E(BP)− E(CP) (2)

EV = E(BV)− E(CV) (3)

Since the Requester accepts the obligation to remunerate the satisfaction of
requirements (the node OtRS is labeled Q in Figure 6.5), the benefits that
Maker can expect are capped by the cost that the Requester is willing to bear.
At the same time, the Requester remunerates evaluation, so that the expected
benefits of the Evaluator are also capped by the Requester’s expected cost. More
specifically, we have

E(BP) + E(BV) ≤ E(CR) (4)

It has been implicit so far, but it is important to note now that expected value
for each of these roles should be positive, else there is no apparent reason for
the losing party to enter the Requirements Contract.

Assumption 1 For a party to consider entering into an Requirements Con-
tract, its expected benefits should outweigh its expected costs.

E(BR) > E(CR) (5)

E(BP) > E(CP) (6)

E(BV) > E(CV) (7)

Does this mean that a party should enter an Requirements Contract as soon
as expected benefits outweigh expected costs? Is that the aim that each party
has, when entering the contract? If, as usually in mainstream economics [],
expected value is expected utility, then one enters the contract in the aim of
maximising one’s utility. In other words, if we have three roles in the contract,
and we assumed each expects value from exercising its rights and discharging
its obligations in the contract, then we also have three parties (if each role is
occupied by a different party).

19

Assumption 2 Each party in the contract will make decisions which it per-
ceives as maximising the value that she will actually receive after exercising the
rights and discharging the obligations that she accepted by accepting the Require-
ments Contract.

The objective functions of the parties, provided that there are three of them,
are as follows.

Requester: max VR (8)

Maker: max VP (9)

Evaluator: max VV (10)

I will also assume that expected and actual value are almost the same. I will
challenge this assumption later.

Assumption 3 Each party in the Requirements Contract will exercise its rights
and discharge its obligations in such a way that makes actual value as close as
possible to its expected value.

VR ≈ ER (11)

VP ≈ EP (12)

VV ≈ EV (13)

To keep the discussion simple still, I need to make another brittle assump-
tion, to relate maximisation of actual value and of expected value. I will question
this assumption later too.

Assumption 4 At the time when a party considers entering into a Require-
ments Contract, i.e., accepting a role in it and the accompanying rights and
obligations, that party will maximise its expected value in order to maximise its
actual, future value.

Requester: max VR ≡ max ER (14)

Maker: max VP ≡ max EV (15)

Evaluator: max VV ≡ max EV (16)

7.2 Simple Case of Conflict of Interest

Consider now four situations that a party can be in, and for simplicity, let that
party be the Requester.

20

• The party believes that each incremental unit of expected cost adds more
than that in expected benefits: there is a gain to be made by taking on
more expected costs, that is, the following is true:

∆E(BR)

∆E(CR)
> 1 (17)

If so, then maximising expected value means deciding to invest more, up
to some limit which is private information for that party.

• The party believes that each incremental unit of expected cost adds less
than that in expected benefits: it costs disproportionately more to get an
increment in expected benefits:

0 <
∆E(BR)

∆E(CR)
< 1 (18)

If this party has a threshold of expected benefits, she should reduce costs
up to – if that happens at all – the point when she believes that marginal
expected value is equal to marginal expected cost, that is, up to the point
when:

∆E(BR)

∆E(CR)
= 1 (19)

• The party believes that any additional unit of expected cost leads to an
equal unit of expected benefits, as in Equation 19. If she hasn’t reached
a private maximal expected cost that she is willing to bear, her interest
is to invest more, i.e., to increase her expected cost as long as marginal
expected cost equals marginal expected benefit, i.e., until Equation 18 is
true, or until she has reached the maximal expected cost she is willing to
accept.

• Finally, we can have this situation:

∆E(BR)

∆E(CR)
< 0 (20)

If this is because ∆E(BR) < 0, then any increase in expected cost is
believed by that party to lead to a reduction in expected benefits. If the
fraction above is negative because ∆E(CR) < 0, then any reduction in
expected cost is believed to increase expected benefit.

But this is only one party, yet we have three in the Requirements Contract.
What happens if we have the following situation?

∆E(BR)

∆E(CR)
< 1,

∆E(BP)

∆E(CP)
> 1, and

∆E(BV)

∆E(CV)
> 1 (21)

21

Due to Equation 4, we can rewrite this as follows:

∆E(BR)

∆(E(BP) + E(BV))
< 1,

∆E(BP)

∆E(CP)
> 1, and

∆E(BV)

∆E(CV)
> 1 (22)

The above shows a conflict of interest: interests of the Maker and Evaluator are
to increase costs in order to increase their benefits more, while this isn’t in the
interest of the Requester.

This only scratches the surface of interest alignment. There are more than
four situations situations identified above, that a party can be in.

7.3 Interest Cases

Figure 7.3 shows eight cases, labelled clockwise from A to H. Each is called
an interest case, in that it describes what a party should have as its interest,
assuming the given relationship between the change of benefits and change of
costs.

Figure 7.3 has three parts. The upper left corner shows four quadrants made
by positive and negative change of expected benefits and costs of the Requester,
and the reading of points in each quadrant. The upper right corner of the
Figure shows the same quadrants, now split into eight combinations of positive
and negative changes in expectations of benefits and costs. The lower part of
the Figure shows in detail all eight combinations, and highlights those where a
change in expected benefits and costs leads to an increase of expected value for
the Requester. It shows that the Requester should want to be in one of the four
situations A, F, G, or H, rather than others.

In summary, Figure 7.3 shows what the interest of the Requester should be,
depending on the interest case it is in. It is important to note that this same
set of interest cases applies to any party; For example, for the Maker role, the
same interest cases apply, except that you need to replace BR with BP and CR

with CP.
In A in Figure 7.3, positive increase expected cost goes together with a

positive increase in benefits, and the increase in the latter is higher than the
increase in the former, so there is an interest for the Requester to increase
expected costs, since doing so increases expected benefits more: increasing cost
will increase expected value.

In F, if the Requester makes a change, that change will involve both a
reduction in expected cost and in expected benefits, with expected benefits
decreasing slower than the expected costs, hence increasing expected value.

In G, decrease of expected costs comes with increasing expected benefits,
and so, an increase in expected value.

In H, the dynamics are the same as in G, except that expected benefits
increase faster.

22

F

G

H A

0

+

+

-

-

ΔE(BR)

ΔE(CR)
Decrease of

expected cost
goes together

with decrease in
expected

benefits

Reduction of
expected cost
goes together
with increase in
expected
benefits

Increase of
expected cost
goes together
with increase in
expected
benefots

Decrease of
expected cost
goes together

with increase in
expected

benefits

A:	ΔE(BR)	/	ΔE(CR)	>	1,	ΔE(BR)	>	0,	ΔE(CR)	>	0:	ΔE(VR)	>	0

0

+

+

-

-

ΔE(BR)

ΔE(CR)

B

C

DE

B:	ΔE(BR)	/	ΔE(CR)	<	1,	ΔE(BR)	>	0,	ΔE(CR)	>	0:	ΔE(VR)	<	0

C:	ΔE(BR)	/	ΔE(CR)	>	-1,	ΔE(BR)	<	0,	ΔE(CR)	>	0:	ΔE(VR)	<	0

D:	ΔE(BR)	/	ΔE(CR)	<	-1,	ΔE(BR)	<	0,	ΔE(CR)	>	0:	ΔE(VR)	<	0

E:	ΔE(BR)	/	ΔE(CR)	<	1,	ΔE(BR)	<	0,	ΔE(CR)	<	0:	ΔE(VR)	<	0

F:	ΔE(BR)	/	ΔE(CR)	>	1,	ΔE(BR)	<	0,	ΔE(CR)	<	0:	ΔE(VR)	>	0

G:	ΔE(BR)	/	ΔE(CR)	>	-1,	ΔE(BR)	>	0,	ΔE(CR)	<	0:	ΔE(VR)	>	0

H:	ΔE(BR)	/	ΔE(CR)	<	-1,	ΔE(BR)	>	0,	ΔE(CR)	<	0:	ΔE(VR)	>	0

Figure 2: Interest Cases of the Requester

8 Conclusions and Open Questions

The intent behind this paper is to stimulate a richer discussion of how proposi-
tions get to have the role of requirements. If you adopt the perspective that is
offered here, that requirements exist in a nexus of economic, contractual, and
engineering relationships, new questions come up. What properties do typical
requirements contracts actually have (such as the one between Hertz and Accen-
ture)? What are the optimal properties of a requirements contract? How do we
design the requirements contract to help align interests of the parties involved?

References

[1] GB Gas Holdings Ltd v Accenture (UK) Ltd & Ors [2009] EWHC 2734
(Comm). Royal Courts of Justice, Strand, London, 2009.

[2] Hertz Corporation v. Accenture LLP, 1:19-CV-03508. District Court, S.D.
New York, 2019.

[3] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Naz’ri Mahrin.
A systematic literature review of software requirements prioritization re-
search. Information and software technology, 56(6):568–585, 2014.

[4] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew

23

Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mel-
lor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for agile
software development, 2001.

[5] Patrik Berander and Anneliese Andrews. Requirements prioritization. In
Engineering and managing software requirements, pages 69–94. Springer,
2005.

[6] Barry Boehm, Prasanta Bose, Ellis Horowitz, and Ming June Lee. Software
requirements negotiation and renegotiation aids: A theory-w based spiral
approach. In Software Engineering, 1995. ICSE 1995. 17th International
Conference on, pages 243–243. IEEE, 1995.

[7] Barry W Boehm. Software engineering economics. Software Engineering,
IEEE Transactions on, (1):4–21, 1984.

[8] Barry W. Boehm. A spiral model of software development and enhance-
ment. Computer, 21(5):61–72, 1988.

[9] Barry W Boehm, John R Brown, and Myron Lipow. Quantitative evalua-
tion of software quality. In Proceedings of the 2nd international conference
on Software engineering, pages 592–605. IEEE Computer Society Press,
1976.

[10] Barry W Boehm, Ray Madachy, Bert Steece, et al. Software Cost Estima-
tion with Cocomo II. Prentice Hall PTR, 2000.

[11] Jr. Brooks, F.P. No silver bullet: Essence and accidents of software engi-
neering. Computer, 20(4):10 –19, april 1987.

[12] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese,
Holger Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw.
Engineering self-adaptive systems through feedback loops. In Software En-
gineering for Self-Adaptive Systems, pages 48–70. Springer, 2009.

[13] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards
requirements-driven information systems engineering: the tropos project.
Information systems, 27(6):365–389, 2002.

[14] Betty HC Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff
Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan
Cukic, et al. Software engineering for self-adaptive systems: A research
roadmap. Springer, 2009.

[15] Jane Cleland-Huang, Raffaella Settimi, Chuan Duan, and Xuchang Zou.
Utilizing supporting evidence to improve dynamic requirements traceabil-
ity. In Requirements Engineering, 2005. Proceedings. 13th IEEE Interna-
tional Conference on, pages 135–144. IEEE, 2005.

24

[16] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-directed
requirements acquisition. Science of computer programming, 20(1):3–50,
1993.

[17] Robert Darimont and Axel Van Lamsweerde. Formal refinement patterns
for goal-driven requirements elaboration. ACM SIGSOFT Software Engi-
neering Notes, 21(6):179–190, 1996.

[18] Alan Davis, Oscar Dieste, Ann Hickey, Natalia Juristo, and Ana Maŕıa
Moreno. Effectiveness of requirements elicitation techniques: Empirical
results derived from a systematic review. In Requirements Engineering,
14th IEEE International Conference, pages 179–188. IEEE, 2006.

[19] Zoltan Dienes and Josef Perner. A theory of implicit and explicit knowledge.
Behavioral and brain sciences, 22(5):735–808, 1999.

[20] Neil A Ernst, Alexander Borgida, Ivan J Jureta, and John Mylopoulos.
Agile requirements engineering via paraconsistent reasoning. Information
Systems, 2013.

[21] Anthony CW Finkelstein, Dov Gabbay, Anthony Hunter, Jeff Kramer, and
Bashar Nuseibeh. Inconsistency handling in multiperspective specifications.
Software Engineering, IEEE Transactions on, 20(8):569–578, 1994.

[22] Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Pistore, Marco Roveri,
and Paolo Traverso. Specifying and analyzing early requirements in tropos.
Requirements Engineering, 9(2):132–150, 2004.

[23] Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Se-
bastiani. Reasoning with goal models. In Conceptual Modeling—ER 2002,
pages 167–181. Springer, 2003.

[24] Joseph A Goguen and Charlotte Linde. Techniques for requirements elici-
tation. In Requirements Engineering, 1993., Proceedings of IEEE Interna-
tional Symposium on, pages 152–164. IEEE, 1993.

[25] Orlena CZ Gotel and CW Finkelstein. An analysis of the requirements
traceability problem. In Requirements Engineering, 1994., Proceedings of
the First International Conference on, pages 94–101. IEEE, 1994.

[26] Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal require-
ments modeling languages: Rml revisited. In Proceedings of the 16th inter-
national conference on Software engineering, pages 135–147. IEEE Com-
puter Society Press, 1994.

[27] Carl A Gunter, Elsa L Gunter, Michael Jackson, and Pamela Zave. A refer-
ence model for requirements and specifications. IEEE Software, 17(3):37–
43, 2000.

25

[28] Constance L Heitmeyer, Ralph D Jeffords, and Bruce G Labaw. Automated
consistency checking of requirements specifications. ACM Transactions on
Software Engineering and Methodology (TOSEM), 5(3):231–261, 1996.

[29] Andrea Herrmann and Maya Daneva. Requirements prioritization based on
benefit and cost prediction: An agenda for future research. In International
Requirements Engineering, 2008. RE’08. 16th IEEE, pages 125–134. IEEE,
2008.

[30] Ann M Hickey and Alan M Davis. A unified model of requirements elici-
tation. Journal of Management Information Systems, 20(4):65–84, 2004.

[31] Pei Hsia, Alan M Davis, and David Chenho Kung. Status report: require-
ments engineering. IEEE software, 10(6):75–79, 1993.

[32] Anthony Hunter and Bashar Nuseibeh. Managing inconsistent specifica-
tions: reasoning, analysis, and action. ACM Transactions on Software
Engineering and Methodology (TOSEM), 7(4):335–367, 1998.

[33] Michael Jackson. Problems and requirements [software development]. In
Proceedings of 1995 IEEE International Symposium on Requirements En-
gineering (RE’95), pages 2–8. IEEE, 1995.

[34] Michael Jackson. The meaning of requirements. Annals of Software Engi-
neering, 3(1):5–21, 1997.

[35] Ivan Jureta, John Mylopoulos, and Stephane Faulkner. Revisiting the core
ontology and problem in requirements engineering. In 2008 16th IEEE
International Requirements Engineering Conference, pages 71–80. IEEE,
2008.

[36] Ivan Jureta, John Mylopoulos, and Stéphane Faulkner. Analysis of multi-
party agreement in requirements validation. In Requirements Engineering
Conference, 2009. RE’09. 17th IEEE International, pages 57–66. IEEE,
2009.

[37] Ivan J. Jureta. What happens to intentional concepts in requirements engi-
neering if intentional states cannot be known? In Heinrich C. Mayr, Gian-
carlo Guizzardi, Hui Ma, and Oscar Pastor, editors, Conceptual Modeling
- 36th International Conference, ER 2017, Valencia, Spain, November 6-9,
2017, Proceedings, volume 10650 of Lecture Notes in Computer Science,
pages 209–222. Springer, 2017.

[38] Ivan J Jureta, Alex Borgida, Neil A Ernst, and John Mylopoulos. Techne:
Towards a new generation of requirements modeling languages with goals,
preferences, and inconsistency handling. In 2010 18th IEEE International
Requirements Engineering Conference, pages 115–124. IEEE, 2010.

26

[39] Ivan J Jureta, Alexander Borgida, Neil A Ernst, and John Mylopoulos.
The requirements problem for adaptive systems. ACM Transactions on
Management Information Systems (TMIS), 5(3):1–33, 2014.

[40] Ivan J Jureta and Stéphane Faulkner. Clarifying goal models. In Tutori-
als, posters, panels and industrial contributions at the 26th international
conference on Conceptual modeling-Volume 83, pages 139–144. Australian
Computer Society, Inc., 2007.

[41] Ivan J Jureta, John Mylopoulos, and Stéphane Faulkner. A core ontology
for requirements. Applied Ontology, 4(3-4):169–244, 2009.

[42] Joachim Karlsson, Claes Wohlin, and Björn Regnell. An evaluation of
methods for prioritizing software requirements. Information and Software
Technology, 39(14):939–947, 1998.

[43] John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Towards a deeper
understanding of quality in requirements engineering. In Advanced Infor-
mation Systems Engineering, pages 82–95. Springer, 1995.

[44] Nupul Kukreja, Barry Boehm, Sheetal Swaroop Payyavula, and Srinivas
Padmanabhuni. Selecting an appropriate framework for value-based re-
quirements prioritization. In 2012 20th IEEE International Requirements
Engineering Conference (RE), pages 303–308. IEEE, 2012.

[45] Julio Cesar Sampaio do Prado Leite and Peter A Freeman. Require-
ments validation through viewpoint resolution. Software Engineering,
IEEE Transactions on, 17(12):1253–1269, 1991.

[46] Emmanuel Letier and Axel Van Lamsweerde. Reasoning about partial goal
satisfaction for requirements and design engineering. In ACM SIGSOFT
Software Engineering Notes, volume 29, pages 53–62. ACM, 2004.

[47] Sotirios Liaskos, Sheila A McIlraith, Shirin Sohrabi, and John Mylopou-
los. Integrating preferences into goal models for requirements engineering.
In Requirements Engineering Conference (RE), 2010 18th IEEE Interna-
tional, pages 135–144. IEEE, 2010.

[48] Daniel Markovits. Theories of the Common Law of Contracts. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, winter 2019 edition, 2019.

[49] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and
using nonfunctional requirements: A process-oriented approach. Software
Engineering, IEEE Transactions on, 18(6):483–497, 1992.

[50] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework
for expressing the relationships between multiple views in requirements
specification. Software Engineering, IEEE Transactions on, 20(10):760–
773, 1994.

27

[51] Balasubramaniam Ramesh and Matthias Jarke. Toward reference models
for requirements traceability. Software Engineering, IEEE Transactions on,
27(1):58–93, 2001.

[52] Norman Riegel and Joerg Doerr. A systematic literature review of require-
ments prioritization criteria. In International Working Conference on Re-
quirements Engineering: Foundation for Software Quality, pages 300–317.
Springer, 2015.

[53] William N Robinson, Suzanne D Pawlowski, and Vecheslav Volkov. Re-
quirements interaction management. ACM Computing Surveys (CSUR),
35(2):132–190, 2003.

[54] Douglas T. Ross and Kenneth E Schoman. Structured analysis for require-
ments definition. IEEE transactions on Software Engineering, (1):6–15,
1977.

[55] Guttorm Sindre and Andreas L Opdahl. Eliciting security requirements
with misuse cases. Requirements Engineering, 10(1):34–44, 2005.

[56] Siv Sivzattian and Bashar Nuseibeh. Linking the selection of requirements
to market value: A portfolio-based approach. In Proceedings of 7th Inter-
national Workshop on Requirements Engineering: Foundation for Software
Quality (REFSQ 2001), 2001.

[57] Stephen A Smith. Contract theory. OUP Oxford, 2004.

[58] Ian Sommerville. Integrated requirements engineering: A tutorial. IEEE
software, 22(1):16–23, 2005.

[59] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Requirements Engineering, 2001. Proceedings. Fifth IEEE Inter-
national Symposium on, pages 249–262. IEEE, 2001.

[60] Axel Van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing
conflicts in goal-driven requirements engineering. IEEE Transactions on
Software Engineering, 24(11):908–926, 1998.

[61] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-
oriented requirements engineering. Software Engineering, IEEE Transac-
tions on, 26(10):978–1005, 2000.

[62] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty HC Cheng, and J-M
Bruel. Relax: Incorporating uncertainty into the specification of self-
adaptive systems. In Requirements Engineering Conference, 2009. RE’09.
17th IEEE International, pages 79–88. IEEE, 2009.

[63] Pamela Zave. Classification of research efforts in requirements engineering.
In Proceedings of 1995 IEEE International Symposium on Requirements
Engineering (RE’95), pages 214–216. IEEE, 1995.

28

[64] Pamela Zave and Michael Jackson. Four dark corners of requirements en-
gineering. ACM transactions on Software Engineering and Methodology
(TOSEM), 6(1):1–30, 1997.

29

	1 Background
	2 Problem
	3 Solution Outline
	4 Paper Outline
	5 Rationale
	5.1 Background to the Rationale
	5.2 Rationale for Contractual Relationships
	5.2.1 Prioritisation
	5.2.2 Acceptability
	5.2.3 Validation

	5.3 Rationale for Economic Relationships

	6 Solution
	6.1 Departure
	6.2 Network
	6.3 Nodes and Links
	6.4 Roles
	6.5 Roles and Parties
	6.6 Right to Request
	6.7 Obligation to Satisfy
	6.8 Obligation to Validate
	6.9 Imperfect Transfer
	6.10 Handling Failure

	7 Alignment
	7.1 Interests
	7.2 Simple Case of Conflict of Interest
	7.3 Interest Cases

	8 Conclusions and Open Questions

