
Requirements Engineering Methods:
A Classification Framework and Research Challenges

Ivan J. Jureta
PReCISE Research Center, University of Namur

ivan.jureta@fundp.ac.be

Abstract—Requirements Engineering Methods (REMs) sup-
port Requirements Engineering (RE) tasks, from elicitation,
through modeling and analysis, to validation and evolution of
requirements. Despite the growing interest to design, validate
and teach REMs, it remains unclear what components REMs
should have. A classification framework for REMs is proposed.
It distinguishes REMs based on the domain-independent prop-
erties of their components. The classification framework is
intended to facilitate (i) analysis, teaching and extension of
existing REMs, (ii) engineering and validation of new REMs,
and (iii) identifying research challenges in REM design. The
framework should help clarify further the relations between
REM and other concepts of interest in and to RE, including
Requirements Problem and Solution, Requirements Modeling
Language, and Formal Method.

Keywords-Requirements Engineering Method, Classification
framework, Requirements Modeling Language, Requirements
Problem and Solution, Formal Method

I. INTRODUCTION

A Requirement Engineering Method (REM) can be thought
of as a combination of a formalism for the representation
and analysis of requirements, and of processes to support
and guide the user of the formalism through Requirements
Engineering (RE) tasks, such as requirements elicitation, rep-
resentation, validation, verification, and evolution. Examples
of REMs are RML [10], ERAE [4], NFR [19], KAOS [3], i*
[21], Viewpoints [5], Labeled Quasi-Classical Logic [12],
Tropos [2], Formal Tropos [7], CARL [9], Techne [14], and
many others.

It is difficult to estimate the number of REMs and of the
publications on REMs. Method informally means a procedure
for doing something, so really any publication which proposes
how to do something within the scope of RE proposes a
method for RE, regardless of what that method’s intended
scope (coverage) and depth (level of detail) may be. Figure
1 gives a very rough estimate of the cumulative number of
publications related to REMs since 1991. REMs are also of
interest outside RE, such as in Business Analysis [11], [13].

Despite the interest in REMs, it is still unclear how to
answer basic questions about them. Which components does
an REM have? Which components must it have and why?
When is an REM domain-specific? Given two REMs, how can
we compare them? How to systematically make an REM?
How to know if some contribution in RE is an REM, an REM

component, or something else? How does REM research relate
to formal methods, logics, ontology engineering? What to
include in a course on REM design?

This paper does not answer all of these questions. Instead,
the proposal is a classification framework for REMs that
distinguishes REMs based on the properties of their compo-
nents. A component is a set of concepts, relations, rules, or
other tools having a well-delimited role within REM. The
framework uses five components, Requirements Problem and
Solution, Ontology, Formalism, Organization Mechanism,
and Guidelines. The classification framework is intended to
help (i) the analysis, teaching and extension of existing REMs,
(ii) the engineering and validation of new REMs, and (iii)
the identification and organization of research challenges in
REMs design and validation. Classification dimensions other
than components are certainly relevant, but stay outside the
scope of this paper (e.g., classification by scope, by domain,
by results from use, etc.).

The framework is first introduced and illustrated (§II),
research challenges (§III) and limitations (§IV) are discussed,
and conclusions are summarized (§V).

● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

1995 1999 2005 2010

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

1991

35
00

0

1993 1997 2001 2003 2007

C
um

ul
at

iv
e

nu
m

be
r o

f p
ub

lic
at

io
ns

Year:

Figure 1. Cumulative number of publications since 1991 that cite in
the title, abstract or main text the exact phrase “requirements engineering”
together with one or more of the terms “method”, “approach”, “framework”,
“methodology”. Data from Google Scholar.

ar
X

iv
:1

20
3.

17
17

v1
 [

cs
.S

E
]

 8
 M

ar
 2

01
2

II. CLASSIFICATION FRAMEWORK

The classification framework uses specific terminology,
capitalized hereafter and italicized when introduced first.

A Component in the classification framework is a set of
concepts, relations, rules, or otherwise, which together serve
a specific purpose within an REM, such as, e.g., to categorize
requirements, to visualize requirements, etc. Each Component
comes with Component Properties. Component Properties
are domain-independent, which in this paper means that
a Component Property is independent from a “paradigm”
followed in the design of an REM, so that there is nothing
in the framework to make it specific to goal-oriented REMs,
or others.

The classification framework uses five Components:
1) Requirements Problem and Solution that the REM

should help, respectively, define and find;
2) Ontology, defining categories of information input to,

used and output by an REM;
3) Formalism, for representation and analysis instances

of the concepts and relations in the Ontology;
4) Organization Mechanism for the organization of

representations made with the Formalism;
5) Guidelines, advising how to use the Ontology, For-

malism and Organization Mechanisms to define the
Requirements Problem and find Solutions to it.

The overall idea behind the framework is simple. The
purpose of an REM needs to be explicit, and is conveyed
through the Requirements Problem that it should help solve,
and the Solution it should help produce. The Ontology
identifies the information that the REM will manipulate. That
information ought to be represented in some structured way,
to help answer questions about requirements. Because there
can be a considerable amount of information to manipulate,
there are Organization Mechanisms, to help decompose and
manage representations. Finally, Guidelines will say why
and how to use the conceptual tools, namely the Ontology,
Formalism, and Organization Mechanisms to instantiate the
Requirements Problem to a specific system-to-be, and find
and describe Solution instances.

The rest of this section discusses Components and Com-
ponent Properties. Each Component is presented in the same
way, with (i) a definition of the Component, (ii) the purpose
of the Component in an REM, (iii) Component Properties,
(iv) examples that illustrate Component Properties in existing
REMs, and (v) discussion of Component Properties in relation
to the hypothetical REM in the case study.

Case Study

Suppose that the aim is to design an REM, call it X,
that should help solve the requirements problem as Zave
& Jackson [22] defined it. The problem says that, given a
set of requirements that must be satisfied together (denote
the set R) and domain assumptions which must be satisfied

together (K), we should find a specification of properties
and behaviors of the system-to-be (S) such that K,S ` R,
where ` is the consequence relation of classical logic.

A. Requirements Problem and Solution

1) Definition: The Requirements Problem concept defines
the undesirable properties of the situation at the start of
RE, which the REM should help solve. The Solution concept
defines desirable properties of the result that the requirements
engineer aims to make with the REM.

2) Purpose of Req. Problem and Solution in REM:

• Define the purpose of REM.
• Define the desired result of applying the REM.
• Force the REM designer to clearly state what her REM

is intended to do within RE, thereby forcing her to state
the scope and depth at which she views the problem
that the REM should help solve.

• Compare REMs, in that the Problem and Solution
statements help us evaluate if an REM is focusing on
the same problem as another, if it focuses on a more
specific, or a more general problem.

• Justify design choices in the REM: Decisions to include
some concepts and relations in the Ontology, support
specific rules of reasoning in the Formalism, and include
processes in the Guidelines can be justified through their
relevance to the description of the Requirements Prob-
lem, and finding and description of Solution instances.

3) Component Properties:

• Implicit Definition: No explicit statement of the Require-
ments Problem and Solution concepts is given, but can
be inferred from other Components of the REM.

• Informal Definition: Component Property is satisfied if
the Requirements Problem and Solution concepts are
defined in natural language.

• Formal Definition: The Requirements Problem and
Solution are defined as expressions in a Formalism.

4) Examples: As there are no explicit definitions of
Requirements Problem and Solution statements, all REMs
cited up to this point, except for Techne have Implicit
Definitions. For example, it is clear in Tropos and KAOS that
the aim is to find operationalizations of high-level goals, but
the explicit statement of this problem, such as the one given
by Zave & Jackson, is absent. Techne is an example where
both Informal and Formal Definition are used.

5) Case Study: X is intended to solve the Zave & Jackson
statement of the Requirements Problem, and this problem has
both an Informal and a Formal Definition, given in the Case
Study. The Solution concept is implicit in the definition of
the Requirements Problem, as it is a specification S which
is consistent with K and R (otherwise it cannot be that
K,S ` R), and which together with domain assumptions is
enough to derive requirements, i.e., K,S ` R.

B. Ontology

1) Definition: An Ontology in an REM is an explicit
specification of concepts and relations, whose instances are
input, used and output by the REM.

2) Purposes of an Ontology in REM:
• Scoping: By including some and excluding other con-

cepts and relations, the Ontology identifies the categories
of information judged relevant to achieve the purpose
of the REM.

• Communication: Concepts and relations of the Ontology
give the starting stable set of terms to use in communi-
cation about requirements.

• Documentation: Categories of information in the On-
tology should be captured by artifacts that document
requirements. Ontology helps structure these artifacts.

• Focusing: For the engineer/user of the REM, the Ontol-
ogy acts as a checklist information to focus on when
applying the REM.

3) Component Properties:
• Implicit Definition: Concepts and relations are not

explicitly defined, but can be inferred from other
Components of the REM. In such cases, it appears as
if there is no Ontology; it can, however, be determined
by looking at the kinds of information used by other
Components.

• Informal Definition: Informal interpretation for concepts
and relations is given via definitions in natural language,
the choice of concepts and relations is justified with re-
gards to the purpose of the REM, and a discussion given
of the ontological commitments, i.e., the assumptions
for choosing particular concepts and relations rather
than others, and for defining them exactly as proposed.

• Structured Definition: Concepts and relations are rep-
resented as a graph, where concepts are nodes and
relations are edges of the graph. This is the case when,
e.g., an Entity-Relationship model is used to describe
the Ontology of the REM.

• Formal Definition: Concepts and relations are defined
using expressions of a formal logic.

4) Examples: In KAOS, the conceptual meta-model pro-
vides the Structured Definition of the Ontology. Informal
definitions are given in intensional form, listing properties of
concepts (e.g., properties of the goal concept) and properties
of relations (e.g., minimality and consistency for the goal
refinement relation). Similar combination is applied in Tropos,
Formal Tropos, i*. To the best of my knowledge, there are no
REMs with Formal Definitions for their complete Ontology.
The Core Ontology for Requirements, subsequently used
in Techne, accomplishes this only in part and indirectly,
by mapping its concepts to a foundational ontology which
has a Formal Definition (see Appendix B of [15]). For
illustration of Formal Definition of Ontology, but unrelated to
RE, see DOLCE [17]. CARL is a case of Informal Definition.

Implicit Definition occurs in the original presentation of both
Viewpoints and Labeled Quasi Classical Logic. In both cases,
concepts and relations are implicit in the Formalisms and
Guidelines, but explicit and separate definitions are not given.

5) Case Study: The Ontology for X should include the
Requirement, Domain assumption, and Specification concepts.
Assume for simplicity that all are top-level concepts. The
consequence relation `, since it is from classical logic, tells
us the Ontology should include a Satisfaction relation from
the Domain assumption and Specification concepts to the
Requirements concept. Note that ` is about derivability, not
satisfaction, but classical logic is sound and complete so
we can talk about Satisfaction as it fits the intuition that
requirements are there to be satisfied.

Informal Definition in X consists of giving (at least)
natural language definitions for the K, S, R concepts and all
relations, then justifying why there are the three concepts
and not more or less, and why they are top-level (i.e., one is
not a specialization of another). An Informal Definition of
the Requirement concept is that it is an optative statement
about the environment of, and/or about the system-to-be. A
Structured Definition for X can be an Entity-Relationship
diagram, showing the three concepts as nodes, and relations
as links. A Formal Definition can consist of defining the
concepts using predicates of a more abstract ontology, such
as writing that Optative(φ) → Requirement(φ), to say that
φ is a requirement if it is optative, whereby the predicate
Optative would be defined in the more abstract ontology.

C. Formalism

1) Definition: A Formalism serves for the representation
of, and reasoning about instances of concepts and relations of
the Ontology. A Formalism in REM defines (i) symbols, (ii)
rules for combining symbols into expressions, whereby the
expressions refer to instances of the concepts and relations of
the Ontology, (iii) semantic domain and semantic mapping
function, to assign values within a domain of interest
to expressions, and (iv) rules and algorithms for making
deductions from, and/or checking properties of, expressions.

2) Purposes of a Formalism in REM:

• Representation/Modeling: Expressions written in the For-
malism are models of information elicited for, and used
in REM. Modeling helps reflection on requirements and
helps highlight the relationships between requirements.

• Communication and Learning: Models facilitate com-
munication between stakeholders and help new project
participants to learn about the requirements of the
system-to-be.

• Analysis: If the Formalism has the necessary features,
models can automatically be checked for properties of
interest, such as consistency, completeness, presence of
solutions to the requirements problem that the model
defines.

• Prediction: If the Formalism has the necessary features,
simulations can be performed on models, to evaluate,
e.g., the probability of failure of a requirement, given a
particular way to operationalize it.

• Traceability: Provided that the Formalism allows the
distinction of model versions and for capturing the
rationale for version changes, the Formalism can help
document traces and aid traceability.

3) Component Properties:
• Multi-Formalism: REM uses more than one Formalism.
• Syntax Properties: Properties of alphabet and of gram-

mar (i.e., rules for combining symbols in the REM):
– Symbolic Syntax: Models are well formed formulas

as in a formal logic; it is relevant then to look
into properties such as the presence of labels on
formulas (to indicate sorts, or to keep track of
formulas in deductions, as in labeled deduction),
of predicates, quantifiers, and so on.

– Graphical Syntax: Models are drawn as diagrams;
it is relevant then to look into the properties of
graphs that these diagrams define, how the diagrams
evaluate on cognitive effectiveness criteria [18], etc.

– Syntax Maps: Presence of rules to map expres-
sions written in one syntax to expressions written
in another syntax, in order to indicate that the
expressions refer to the same (or aspects of the
same) instances of concepts and relation (i.e., that
the expressions aim to state the same information).
This Component Property applies to REMs which
include two or more ways to represent the same
information (e.g., symbolic and graphical syntax)

• Deductive System Properties: Properties of the set of
rules capturing correct inferences from a given set of
expressions; properties of interest include:

– Classicality: How the Deductive System in the
REM relates to that of classical logic; this can be
established by verifying which of Gabbay’s [8] 13
properties the REM’s Deductive System satisfies.

– Paraconsistency: Whether the Deduction System
allows deriving any formula from an inconsistent
set of formulas; property relevant for inconsistency
handling, as a Paraconsistent Deductive System
allows drawing useful conclusions from an incon-
sistent set of formulas.

• Model Theory Properties: Presence of a semantic
domain and a function mapping expressions to elements
of the semantic domain; properties of interest include:

– Truth Valuation System: The number of, and re-
lationships between truth values (e.g., four truth
values with two order relations, as in Belnap’s four
valued logic [1]).

– Inconsistency Valuation: If an expression can be
evaluated as both true and false, and what aggregate

truth value such expressions obtain.
– Incompleteness Valuation: If the truth value of an

expression can be undetermined, and what truth
value such expressions then obtain.

– Utility Valuation: If the truth, falsity, or another
valuation of an expression is interpreted as being
(and how) valuable with regards to a purpose; e.g.,
truth of a requirement can be informally interpreted,
in an REM, as that the requirement will be satisfied
by the system-to-be if it is designed according to
the Solution of the REM, so we see some truth
values are being more desirable than others in the
resolution of the Requirements Problem.

4) Examples: KAOS, Formal Tropos and Techne are Multi-
Formalism REMs, as each includes a Symbolic and a Graphic
Syntax: linear-temporal logic and goal trees in KAOS, linear
temporal logic and i* diagrams in Formal Tropos, a custom
symbolic syntax with a deductive system and corresponding
graphs in Techne. Viewpoints can be a Multi-formalism REM
if different Viewpoints use different Formalisms. Techne has
Syntax Maps which ensure that all represented in Symbolic
Syntax can be translated into Grphical Syntax, and back.
This is not the case in KAOS and Formal Tropos: e.g.,
temporal relations that can be captured in linear temporal
logic have no corresponding representation in Graphical
Syntax in either of these REMs. Neither KAOS nor Formal
Tropos have a Deductive System, while Techne does. In
contrast, Techne has no Model Theory, while both KAOS
and Formal Tropos do. Deductive Systems of both Labeled
Quasi-Classical Logic and Techne fail Classicality, both being
Paraconsistent; however, they are not Paraconsistent in the
same way, meaning that they would not derive the same
conclusions given a same set of inconsistent formulas. i* has
Graphical Syntax, no Deductive System and no Model Theory.
Truth Valuation System in KAOS and Formal Tropos is that of
linear temporal logic, so it can be understood as involving two
truth values (if we say “true” for a formula which is satisfied,
false otherwise), so that there are no interesting Inconsistency
and Incompleteness Valuations. Utility Valuation in KAOS
and Formal Tropos is not developed beyond the idea that if
a formula representing a requirement is true/satisfied, then
this is seen as beneficial.

5) Case Study: Since ` in the Requirements Problem is
the consequence relation of classical logic, the Formalism
of X must be either classical logic, or another formalism
which ensures that we can check derivability or satisfaction
(e.g., linear temporal logic will work) and has a notion of
inconsistency, so that we can check if some given set R,
K, and/or S is consistent (as the formulation K,S ` R
requires that K ∪S ∪R is consistent). If we add a Graphical
Syntax, then X will be a Multi-Formalism. If so, then Syntax
Maps define how formulas from the Symbolic Syntax map to
(combinations of) primitives in Graphical Syntax. If we keep

classical logic as one of the two Formalisms, then it will
fail Paraconsistency. The Truth Valuation System properties
in that case are also straightforward. Note that there is no
Incompleteness and Utility Valuation.

D. Organization Mechanism

1) Definition: Organization Mechanisms are intended to
facilitate the creation and manipulation of expressions written
in the Formalism of the REM. An Organization Mechanism
will include rules enabling, e.g., to reuse and combine model
fragments, to highlight relations between model fragments
that the Formalism cannot or is not intended to show.

2) Purposes of Organization Mechanisms in REM:

• Modularity: A model can be split into pieces and each
piece presented individually, perhaps accompanied with
comments helping the reader of the model.

• Problem decomposition: Different pieces of the model
can focus on different aspects of functionality of the
system-to-be. The Organization Mechanism can allow
an aspect to be considered while hiding others, and
showing only its relationships with others. This can
help distribute work among those involved in modeling.

• Reuse: A piece of a model may represent requirements
that need to be satisfied by different features of the
system-to-be. The Organization Mechanism can allow
inclusion of pieces by referencing them, thus avoiding
repetition and enabling reuse.

3) Component Properties:

• Reference: Presence of tools to reference, without
reproducing, pieces of a model.

• Structure: Presence of part-of and is-a relations between
model pieces, to capture, respectively, (i) that a piece
is an aggregate of other pieces, that the latter are parts
of the former, and (ii) that a piece is a generalization
of other pieces, i.e., that the latter are specializations of
the former.

• Interface: Presence of tools to describe how a model
piece depends on another model piece, without de-
scribing the internals of either, and thus, how model
pieces depend on contents of other model pieces, or of
operations defined in other model pieces.

• View: Presence of tools to group pieces of a model
according to interests of different stakeholder groups,
such as clients or suppliers, managers or engineers, etc.

• Constraint: Ability to define constraints on relationships
between pieces of models, such as conditions which
should be satisfied for a set of pieces to be parts
of another piece, or that some pieces together are a
refinement of another piece, etc.

• Verification: availability of algorithms to automatically
verify whether constraints on relationships between
pieces of models are satisfied.

4) Examples: i* allows Structuring via actor boundaries,
to indicate that some model pieces belong to the same actor
(stakeholder, user, or otherwise). Tropos and Formal Tropos
inherit this mechanism. Formal Tropos includes templates,
each template being associated to an instance of the ontology
in i*. This means that i* models act as-if they are the
Organizing Mechanism for a specification in linear temporal
logic. In other words, goals, tasks, and other notions in i*
models play the same role as schemas and schema relations
play in the Z notation: they are used to organize pieces of a
model. This idea is in KAOS, which uses the goal concept
and goal trees as an Organization Mechanism for formulas in
linear temporal logic. Some relations in KAOS are defined in a
way which allows Verification: e.g., goal refinement is defined
via properties between formulas of linear temporal logic in the
goals participating in the refinement (consistency of the goals
in refinement, minimality of the refining goal set, etc.) so
that Verification of such properties is feasible. Labeled Quasi-
Classical Logic and Techne have no Organization Mechanism.
Viewpoints themselves are an Organization Mechanism of
model pieces. CARL uses its Ontology as an Organizing
Mechanism, taking sets of formulas to be extensions of
concepts in its Ontology. These examples raise the issue of
what interplay there can be between Ontology, Formalism,
and Organization Mechanisms in an REM (see, §III-E).

5) Case Study: For example, to have views in X, we can
adopt the ideas from Viewpoints. In this case, we can define
meta-level rules for, e.g., solving inconsistencies between
viewpoints, including a viewpoint into another viewpoint,
and for referencing viewpoints in one another. We can thus
use Viewpoints to satisfy Component Properties such as
Reference, Structure, View, and Constraint. If meta-level rules
are themselves defined in a logic, and there are means for,
say, model checking for that logic, X can satisfy Verification.

E. Guidelines

1) Definition: Guidelines include all recommendations
given on how to instantiate the concepts and relations of the
Ontology, make models using the Formalism and manage
models using Organization Mechanisms in an REM.

2) Purposes of Guidelines in REM: Guidelines suggest
how to use the components of an REM to accomplish activities
in RE, such as elicitation, modeling, analysis, negotiation,
validation, or otherwise.

3) Component Properties:

• Design Guidelines: Presence of rules and steps in which
to apply rules to structure the problem space. Design
Guidelines are present if it is explained how to refine
and operationalize requirements, and identify/define
alternative refinements and operationalizations. A refine-
ment relates requirements at different levels of detail;
operationalization relates a requirement to resources and
processes to use and apply to satisfy the requirement.

• Decision Making Guidelines: Presence of rules and steps
for defining criteria for ranking alternative refinements
and operationalizations of requirements, and select the
refinements and operationalizations ranking highest
according to most important criteria.

• Inconsistency Handling Guidelines: Presence of rules
and steps for knowing what model pieces are incon-
sistent and what to do about them, such as whether to
tolerate or resolve the inconsistencies, which of them
to resolve when (as soon as detected, or later), etc.

• Tool Support: availability of software designed to
facilitate the modeling or other applications of the REM.

4) Examples: Any REM that includes the refinement
(or decomposition) and operationalization (or means-ends)
relations allows the structuring of the requirements problem
and solution space, which includes all REMs being able to
formalize such relations. This does not mean that they all
include Design Guidelines. KAOS, i*, Tropos, Formal Tropos
include guidelines on how to refine/decompose and opera-
tionalize requirements. Viewpoints comes with instructions on
how to relate and combine viewpoints, and in this sense also
provide Design Guidelines. Techne, Labeled Quasi-Classical
Logic and CARL have the necessary concepts and relations,
but are not explicit on steps to follow. Decision Making
Guidelines are less common. Notions such as quality criteria
and nonfunctional requirements are present in Tropos, i*,
Techne, but methods on how to rank alternatives are explicit
only in NFR and in KAOS in relation to uncertainty [16].
Labeled Quasi-Classical Logic, CARL and Viewpoints do
not include the necessary concepts, relations, and guidelines.
Inconsistency Handling Guidelines are given in Viewpoints,
NFR, KAOS, Tropos (as in NFR). Techne is paraconsistent,
but does not provide explicit Guidelines on what to do, when
inconsistency is deduced. KAOS, i*, NFR, Tropos, Viewpoints,
CARL all have software tools to support Guidelines.

5) Case Study: To make X into a Design Method, we need
at least to ensure that it has the refinement relation. To have
Decision Making Guidelines in X, we need to add at least
one preference relation, rules for aggregating preferences,
and a decision rule to rank alternatives. An alternative can
amount to a consistent specification S, which also satisfies
the condition that K,S ` R. Preference relations would
indicate relative desirability of each specification. The rule for
aggregating preferences and for ranking alternatives should
let us define a total order over all specifications. The idea is
then, that we would select the highest-ranking specification.
If the Formalism is classical logic and Viewpoints are used
as the Organization Mechanism, then Inconsistency Handling
Method can be defined using meta-level rules. Finally, Tool
Support will be satisfied if there is software that helps make
and do reasoning on models made with X.

III. RESEARCH CHALLENGES

Research challenges can be summarized in the following
questions:

• How to design REM in a systematic way?
• How to validate REM in a systematic way?
• How to teach design and validation of REM?

These questions become more specific when considered
for each Component and Component Property.

A. What criteria should we use to evaluate the relevance of
ontological commitments?

That is, how to make and justify assumptions and decisions
that led to define an REM’s Ontology in a particular way,
and specifically why the Ontology has the given scope and
depth? In the case study, this means explaining why there are
three and not more top-level concepts in X, why some of the
three are not specializations of others, whether some or all
of top level concepts should be specialized in the Ontology,
and if yes, then to what depth.

There are different complementary methods for answering
these questions. Justification for the three concepts can be
given in terms of arguments against ontologies in existing
REM, by deriving the Ontology from a more general body of
knowledge (e.g., claiming that concepts should cover specific
grammatical moods), deriving the Ontology from a higher-
level (e.g., a foundational) ontology, or justifying concepts
by the presence/absence of some specific information in
many experience reports and case studies. Relative merits
and limitations of these different approaches are not clear
enough, making it difficult to say how one should approach
Ontology engineering for an REM.

B. How can we inform the design of Ontology and Formalism,
through empirical research into categories of information
and reasoning rules that engineers tend to recurrently use
or disregard during RE?

Leaving aside the application of REM to case studies as a
form of validation, empirical research can be done to inform
Ontology and Formalism design for REM. Empirical research
on human nonmonotonic reasoning suggests a direction.
Namely, just as factors influencing human nonmonotonic
reasoning have been studied (cf., e.g., [6]), so can factors
influencing reasoning about requirements problems be studied.
In the former, data collection consists of asking subjects to
choose among predefined answers to problems requiring non-
monotonic reasoning as formalized in, say, default logic. If
such an approach is applied to evaluate REMs, then observing
systematic departure in answers people give to a specific
problem of modeling or reasoning about requirements, from
answers that an REM would provide, can suggest that REM
helps reduce error in that specific modeling and/or reasoning
task.

C. Can there be a core ontology applicable across REMs?

An ontology is a core ontology if it is minimal with regards
to a purpose, i.e., includes only non-overlapping concepts
and relations that are necessary and sufficient for satisfying
a purpose. In the case study, the minimal ontology includes
the Requirement, Specification, and Domain assumption
concepts, along with only those relations necessary and
sufficient to capture the complex relationship K,S ` R
(complex, because to define `, one uses connectives over
formulas in K, S, R and relations between premises and
conclusions in proof rules of classical logic). To have a core
ontology applicable across REMs requires recognizing and
successfully arguing that there are concepts and relations
without which a proposal for an REM fails. This then leads
to questions such as, Can there be an REM which has
Design Guidelines, but which cannot model the refinement
relation?, or Can an REM support decision making by
modeling alternative solutions to a requirements problem,
while not having some form of the preference relation
between requirements? So if one claims an REM must have
Design Guidelines (for how would it otherwise solve a
requirements problem which assumes unclear and incomplete
requirements are what we start with in RE?), then one needs
also to choose whether refinement is a core relation. Not
only this, but one also has to determine if there are relations
from which refinement can be defined (e.g., as in Techne), so
that refinement, while perhaps necessary in any REM, really
is a derived relation, not a primitive one.

D. Can we further clarify the role that concepts and relations
have in reasoning about requirements?

There is an important difference between REMs such as
KAOS, Tropos, Techne, i* and Formal Methods such as Z
and Larch. In Z, the concept of Schema groups definitions
and expressions. In the mentioned REMs, the Goal concept
(and other concepts) are intended to do more than organize
formulas. The Goal concept is particularly illustrative, in
that it says the conditions stated in the formulas (the linear
temporal logic formulas in KAOS and Formal Tropos) it
“includes” are desired, which is something that these formulas
alone do not convey (as there is no sort, modality, or otherwise
in linear temporal logic which refers to desirability). But
these same REMs do not take the next step, one analogous
to what modal logics do with regards to classical logic:
the REMs do not study how to introduce these modalities
into the semantics of the Formalism in the REM. The very
specific question is, for example, does the Goal concept give
a sort on formulas in a Formalism, and if yes, then does this
sort merely label formulas, or does the sort of the formula
influence the role this formula has in proof theory of that
Formalism?

To make the point here clearer, consider the case study
again. If we take classical logic, and make its language sorted,
with the three sorts R, K, and S, but at the same time, we

keep the semantics of classical logic, we have only introduced
labels on formulas: reasoning is still that of classical logic,
and so we have failed to capture, in the Formalism, the
intuitive ideas on what it means for a formula to be a
Requirement, while another one is a Domain assumption.

If we follow Wittgenstein’s aphorism that “meaning is use”,
then REMs such as KAOS, Tropos, Formal Tropos, Techne,
along with all those cited in this paper are limited, since they
use pre-existing logics which disregard these sorts defined
by the Ontology of the REM.

If we wanted conceptual tools designed to the specific
purpose of the REM, then our intuitions about the difference
in use and during RE of R, K, and S expressions, should
be reflected in the rules used to draw conclusions in the
Formalism. So if we focus on proof theory, we would want
to “embed” whatever meaning we have in mind for R, K,
and S by the proof theory itself, precisely in order to make
sure that the conclusions are drawn in a way that satisfies
the intended meaning.

This brings me back to the question of how we could
further clarify the role of concepts and relations in reasoning
about requirements. We can do this – namely, embed the
intended interpretation of concepts and relation of an REM’s
Ontology into its Formalism – only if we have clarified the
role that these concepts and relations have when reasoning
about requirements in that REM, i.e., only if we are very
clear on their use, and from there, of their meaning.

To put it plainly: it is relatively easy to say that some
formula φ is an instance of the Requirement concept; what
is harder is explaining how this additional information – that
φ is a Requirement, not a Domain assumption – influences
the conclusions we will draw about the satisfaction of φ, or
about inconsistency between φ and some other formulas.

To illustrate this, suppose that we want to have a knowledge
base which includes all formulas with K, S, and R labels.
If that knowledge base makes deduction using the classical
`, then the question “Is a requirement φ satisfied?” gets an
irrelevant answer in at least two cases:

1) If the knowledge base is inconsistent, then ` will derive
φ regardless of what actually is in that knowledge base
(just as it will derive any other formula, because of ex
falso quodlibet).

2) Because ` is reflexive, meaning that any formula on its
left-hand side is always deduced, we will conclude that
any formula on the left-hand side is satisfied (formally,
for any set X of formulas, and any formula φ, we have
that X ∪ {φ} ` φ).

Yet in both cases, it makes no sense to say that φ is satisfied,
for the simple reason that in both cases, we have said nothing
about if φ is operationalized, refined, or otherwise.

Now, observe that the knowledge base will give wrong
answers not because ` is somehow deficient by itself, but
because the proof theory defining ` sees no difference
between formulas that are requirements, domain assumptions,

and specifications (or any other category one deems relevant).
We can respond to this in two ways:

1) We can make tools that are outside the knowledge
base, and which filter, after deduction, the results
of deduction by applying some rules. This is what
happens in KAOS for example (although it is not about
deduction, but model checking, but that makes no
difference here), as it requires first that conflicts and
obstacles be eliminated to repair consistency, and only
then can questions, such as whether a requirement is
satisfied, be asked.

2) We can make a Formalism which is attentive to which
formulas instantiate which concepts and relations from
the Ontology. But this requires a considerable change
in how REMs are made, as the following question
suggests.

E. Integration of Components

It is without doubt good for a representation of require-
ments to be modular. But it is not clear whether it is good
for an REM to be modular. All REMs mentioned in this paper
are modular in the following sense: REM Components are
designed to a considerable extent independently from the
Formalism component. This is a strong claim, but one not
difficult to argue for.

Take Tropos as an example. It uses the Ontology of i*. One
of its two Formalisms is the graphical language of i*. The
other is linear temporal logic. The language of i* is obviously
defined to fit the Ontology of i*. But linear temporal logic is
independent from the i* Ontology and from the i* Formalism.
Yet it is via linear temporal logic that one can do automated
reasoning in Tropos. Just as linear temporal logic ignores
that there are actors, goals, tasks in i* models, so it ignores
that there are goals, agents, refinements in KAOS models.

For further illustration, take the REM X in the case study.
As mentioned earlier (cf., §III-D), if X has classical logic as
its Formalism, then asking questions to the knowledge base of
X will give misleading answers. That is, the answers are likely
to violate the rules and processes stated in the Guidelines
of the REM. One such rule is that a requirement must be
satisfied by functionality described in the specification S and
which is consistent with the domain assumptions K. Yet, we
would still get the answer from the knowledge base that a
requirement φ is satisfied, even when S is inconsistent and
includes no descriptions of functionality for performing tasks
which satisfy φ.

If one prefers to think in terms of goals and tasks that
satisfy the goals, then suppose φ is a goal (i.e., φ is an
instance of the Goal concept in the Ontology of the REM).
Suppose that the guideline in the REM is this: a goal is
satisfied if there are tasks that operationalize it, meaning that
if these tasks are satisfied, then the goal is satisfied as well.
If REM uses classical logic as its Formalism, then deducing
φ does not mean it is satisfied in the said sense, because (as

mentioned above – cf., §III-D) it can be deduced in cases
when there are no tasks which operationalize φ.

IV. DISCUSSION

The Research Challenges section (cf., §III) started by
asking three questions, namely, how to (i) systematically
design REM, (ii) validate them, and (iii) teach design and
validation.

It should be clear that the proposed classification frame-
work has a limited use in answering these questions. For
systematic design, the framework gives a checklist of ingredi-
ents of REM that a REM designer will in one way or another
need to think about. This checklist itself suggests what
knowledge one will need to apply when designing an REM –
ontology engineering, formal logic, process design, etc., in
addition to her understanding of RE. The framework does
not say what concepts and relations are more relevant than
others, what reasoning rules to use, etc. For validation, the
framework suggests how validation methods already known
for specific Components and Component Properties can be
used for validation of an REM (cf., §III-B). For teaching,
the framework suggests the topics to cover with students
and researchers interested in the application, engineering,
extension, and validation of REMs.

The rest of this section discusses the relationship between
the concept of REM and concepts of Requirements Modeling
Language and Formal Method.

A. Requirements Modeling Language

The emphasis in a Requirements Modeling Language is
on language, i.e., a conceptual tool for representation of, and
reasoning about requirements. In an REM, this conceptual tool
would amount to the combination of Ontology, Formalism,
and Organization Mechanism components. In Requirements
Modeling Languages such as RML and i*, guidelines for
the use of the language are usually treated separately, as
are the Requirements Problem and Solution concepts. An
REM can be viewed as including an RML, if we take an
RML to include the Ontology, Formalism, and Organization
Mechanism components.

B. Formal Methods

I take Wing’s definition of Formal Methods [20] (FMs
hereafter) as the definition of FMs.

In terms of Components, FMs are combinations of Formal-
ism, Organization Mechanisms, and Guidelines. Ontology is
not developed in the same sense as in REMs, and at best can
amount to syntactic sugar, to make specifications readable
by customers, in addition to specifiers and implementors.
The classification framework suggests that Requirements
Problem and Solution, Ontology, and Guidelines in an
REM are not merely syntactic sugar, but, by influencing
the conceptualization of the requirements problem and the

process of its resolution, influence how one designs, or should
design, the Formalism and Organization Mechanisms.

We can, so to speak, hack an FM by adding an Ontology
to it as syntactic sugar, and so make it look like an REM.
The limitation of doing so is that the hacked artifact – the
FM – shows its limitations as soon as we start using it to
RE-specific tasks, which were not of interest to the designer
of the FM. An example is to make knowledge bases using
the Formalism in the REM, and to ask questions about which
requirements are satisfied. If Ontology is only syntactic sugar
and Guidelines are merely text alongside the FM, we are
likely to get wrong answers (for reasons stated earlier – cf.,
§III-D). This is not the problem of the underlying FM, but
of the fact we are using it despite knowing that it ignores
Ontology added on top of it and the Guidelines for its use,
so that it cannot make sure its answers reflect the knowledge
that the Ontology and Guidelines capture. In a summary,
REMs are not specializations of FMs.

V. CONCLUSIONS

This paper suggests a classification framework for Re-
quirements Engineering Methods (REMs). The framework
categorizes REMs by the properties of REM components.
The framework is intended to help the analysis, teaching,
and extension of existing REMs, and the engineering and
validation of new REMs. The paper discusses research
challenges highlighted by the framework. The framework
clarifies the relations between the concept of REM and
other concepts of interest in and to RE, and in particular,
Requirements Problem and Solution, Requirements Modeling
Language, and Formal Method. As noted in the Introduction,
this classification framework focuses on one dimension only
– the components of REM – while other dimensions of
classification are not discussed here.

The classification framework identifies, through Compo-
nents and Component Properties, the knowledge applicable
when designing REMs. In doing so, the framework suggests
fragments for a body of knowledge of a research methodology
proper to the design of REMs. To the extent that REM design
and validation are important activities in RE research, the
framework contributes to forming a research methodology
specific to RE.

Acknowledgments

Since 2008, I had discussed the ideas behind this classi-
fication framework with many colleagues at University of
Trento, University of Toronto, Fondazione Bruno Kessler,
and University of Namur. I am indebted to John Mylopoulos
and Alexander Borgida for introducing me to requirements
modeling languages. I thank Stéphane Faulkner, Neil Ernst,
Sotirios Liaskos, Alexei Lapouchnian, Angelo Susi, and
Anna Perini for discussions on topics related to REMs. This
does not mean that they agree with me on this classification
framework.

REFERENCES

[1] N. D. Belnap, Jr. A useful four-valued logic. In J. M. Dunn
and G. Epstein, editors, Modern Uses of Multiple-Valued Logic.
D. Reidel Publishing Co., 1977.

[2] J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-
driven information systems engineering: the Tropos project.
Inf. Syst., 27(6):365–389, 2002.

[3] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition. Sci. Comput. Program.,
20(1-2):3–50, 1993.

[4] E. Dubois, J. Hagelstein, and A. Rifaut. Formal Requirements
Engineering with ERAE. Philips Journal of Research,
43(3/4):393–414, 1988.

[5] A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh. Inconsistency handling in multiperspective
specifications. IEEE Trans. Softw. Eng., 20(8):569–578, 1994.

[6] M. Ford and D. Billington. Strategies in human nonmonotonic
reasoning. Computational Intelligence, 16(3):446–468, 2000.

[7] A. Fuxman, L. Liu, J. Mylopoulos, M. Roveri, and P. Traverso.
Specifying and analyzing early requirements in Tropos. Re-
quirements Eng., 9(2):132–150, 2004.

[8] D. Gabbay. Theoretical foundations of non-monotonic reason-
ing in expert systems. In Logics and Models of Concurrent
Systems. Springer, 1985.

[9] V. Gervasi and D. Zowghi. Reasoning about inconsistencies
in natural language requirements. ACM Trans. Softw. Eng.
Methodol., 14(3):277–330, 2005.

[10] S. J. Greenspan. Requirements modeling: a knowledge
representation approach to software requirements definition.
PhD thesis, 1984.

[11] K. B. Hass. The business analyst: The pivotal IT role of the
future. Hewlett-Packard Company, 2007.

[12] A. Hunter and B. Nuseibeh. Managing inconsistent specifi-
cations: Reasoning, analysis, and action. ACM Trans. Softw.
Eng. Methodol., 7(4):335–367, 1998.

[13] IIBA. A Guide to the Business Analysis Body of Knowledge.
International Institute for Business Analysis (IIBA), 2009.

[14] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos.
Techne: Towards a New Generation of Requirements Mod-
eling Languages with Goals, Preferences, and Inconsistency
Handling. In 18th IEEE Int. Requirements Eng. Conf., 2010.

[15] I. J. Jureta, J. Mylopoulos, and S. Faulkner. A core ontology
for requirements. Applied Ontology, 4(3-4):169–244, 2009.

[16] E. Letier and A. van Lamsweerde. Reasoning about partial
goal satisfaction for requirements and design engineering. In
SIGSOFT FSE, pages 53–62, 2004.

[17] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltamari,
and L. Schneider. DOLCE : a Descriptive Ontology for
Linguistic and Cognitive Engineering. Technical report,
Institute of Cognitive Science and Technology, Italian National
Research Council, 2003.

[18] Daniel Laurence Moody, Patrick Heymans, and Raimundas
Matulevicius. Visual syntax does matter: improving the
cognitive effectiveness of the i* visual notation. Requir. Eng.,
15(2):141–175, 2010.

[19] J. Mylopoulos, L. Chung, and B. Nixon. Representing
and using nonfunctional requirements: A process-oriented
approach. IEEE Trans. Softw. Eng., 18(6):483–497, 1992.

[20] J. M. Wing. A specifier’s introduction to formal methods.
IEEE Computer, 23(9):8–24, 1990.

[21] E. S. K. Yu and J. Mylopoulos. Understanding ”Why” in
Software Process Modelling, Analysis, and Design. In Proc.
16th Int. Conf. Software Eng., pages 159–168, 1994.

[22] P. Zave and M. Jackson. Four dark corners of requirements
engineering. ACM T. Softw. Eng. Methodol., 6(1):1–30, 1997.

	I Introduction
	II Classification Framework
	II-A Requirements Problem and Solution
	II-A1 Definition
	II-A2 Purpose of Req. Problem and Solution in rem
	II-A3 Component Properties
	II-A4 Examples
	II-A5 Case Study

	II-B Ontology
	II-B1 Definition
	II-B2 Purposes of an Ontology in rem
	II-B3 Component Properties
	II-B4 Examples
	II-B5 Case Study

	II-C Formalism
	II-C1 Definition
	II-C2 Purposes of a Formalism in rem
	II-C3 Component Properties
	II-C4 Examples
	II-C5 Case Study

	II-D Organization Mechanism
	II-D1 Definition
	II-D2 Purposes of Organization Mechanisms in rem
	II-D3 Component Properties
	II-D4 Examples
	II-D5 Case Study

	II-E Guidelines
	II-E1 Definition
	II-E2 Purposes of Guidelines in rem
	II-E3 Component Properties
	II-E4 Examples
	II-E5 Case Study

	III Research Challenges
	III-A What criteria should we use to evaluate the relevance of ontological commitments?
	III-B How can we inform the design of Ontology and Formalism, through empirical research into categories of information and reasoning rules that engineers tend to recurrently use or disregard during re?
	III-C Can there be a core ontology applicable across rems?
	III-D Can we further clarify the role that concepts and relations have in reasoning about requirements?
	III-E Integration of Components

	IV Discussion
	IV-A Requirements Modeling Language
	IV-B Formal Methods

	V Conclusions
	References

