arXiv:1507.06260v1 [cs.SE] 22 Jul 2015

Requirements Problem and Solution Concepts
for Adaptive Systems Engineering, and their
Relationship to Mathematical Optimisation,
Decision Analysis, and Expected Utility Theory

Ivan J. Jureta

Abstract Requirements Engineering (RE) focuses on eliciting, modelling, and an-
alyzing the requirements and environment of a system-to-be in order to design its
specification. The design of the specification, usually called the Requirements Prob-
lem (RP), is a complex problem solving task, as it involves, for each new system-
to-be, the discovery and exploration of, and decision making in, new and ill-defined
problem and solution spaces. The default RP in RE is to design a specification of the
system-to-be which (i) is consistent with given requirements and conditions of its
environment, and (ii) together with environment conditions satisfies requirements.
This paper (i) shows that the Requirements Problem for Adaptive System (RPAS) is
different from, and is not a subclass of the default RP, (ii) gives a formal definition
of the RPAS, and (iii) discusses implications for future research.

1 Introduction

1.1 Domain: Requirements Engineering

Requirements Engineering (RE) focuses on eliciting, modelling, and analysing
the requirements and environment of a system-to-be in order to design its specifica-
tion.

It is on the basis of its specification that the system is built, updated, changed, its
new releases planned, made, announced, rolled out. Specifications can take different
forms, ranging from minimalistic to-do lists that hint at expectations and subsume
implicit engineering solutions, to elaborately structured documentation on contracts
with employees and suppliers, responsibilities of positions in the value chain, guide-

Ivan J. Jureta
Fonds de la Recherche Scientifique — FNRS and Department of Business Administration, Univer-
sity of Namur, e-mail: ivan. jureta@unamur.be

ivan.jureta@unamur.be

2 1. J. Jureta

lines for employee coordination and collaboration, as well as formal software spec-
ifications made for use with a model checker.

The design of the specification, usually called the Requirements Problem (RP),
is a complex problem solving task, as it involves, for each new system-to-be, the
discovery and exploration of, and decision making in, new and ill-defined problem
and solution spaces.

Difficulties involved in solving an RP instance are illustrated by the variety of
topics studied in RE research, such as requirements elicitation [23 28 [16], catego-
rization [[14}161},35]], vagueness and ambiguity [45. 43| 34]], prioritization [36} 2}, 27]],
negotiation [42} 3| [32]], responsibility allocation [14} [11} 21]], cost estimation [4}, [7|
53|, conflicts and inconsistency [46, 26, 57|, comparison [45) 43| |44]], satisfaction
evaluation [6, |45} 41]], operationalization [22} 21} [17]], traceability [24} 150, [13]], and
change [12,159,110].

RE issues are present when designing new and changing existing systems; they
are there whatever the system class and domain, and regardless of the extent to
which people are involved in the system: from autonomic Internet-scale clouds, to
traditional desktop applications, industrial expert systems, and embedded software,
all enabling anything from massive mobile apps ecosystems, global supply chains,
medical processes, business processes, mobile gaming, and so on. Moreover, RE
issues are present regardless of how the software in the system is designed and
made, from a military waterfall to a startup’s own agile dialect, and from organisa-
tions where developers talk directly to customers, to those where product designers,
salespeople, or others mediate between requirements and code.

1.2 Context: Default Requirements Problem

The de facto default view in RE, is that the specification is produced incrementally,
starting from a limited set of incomplete, inconsistent, and imprecise information
about the requirements and the system’s operating environment, and that each de-
sign step reduces incompleteness, removes inconsistencies, and improves precision,
towards the specification of the system [J5} [14} 251146} 120, 161,156} [111 152} 133} [17].

This important and general conceptualisation of the aim in RE is most clearly
formulated in Zave & Jackson’s seminal paper, “Four dark corners of requirements
engineering” [61]]. Their view, denoted ZJ hereafter, is echoed in some of the most
influential research in the field, which both preceded and followed the said paper,
including, for example, contributions from Boehm et al. [5, 3], van Lamsweerde et
al. [14} [15 157} 158. 156, 143], Mylopoulos et al. [45} 25, [11], Robinson et al. [32],
Nuseibeh et al. [46, 30], to name some.

According to the ZJ view, in any concrete systems engineering project, RE is
successfully completed when the following conditions are satisfied [61]:

1. “There is a set R of requirements. Each member of R has been validated (checked infor-
mally) as acceptable to the customer, and R as a whole has been validated as expressing
all the customer’s desires with respect to the software development project.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 3

2. There is a set K of statements of domain knowledge. Each member of K has been vali-
dated (checked informally) as true of the environment.

3. There is a set SS of specifications. The members of S do not constrain the environment;
they are not stated in terms of any unshared actions or state components; and they do
not refer to the future.

4. A proof shows that K, S+ R. This proof ensures that an implementation of S will satisfy
the requirements.

5. There is a proof that S and K are consistent. This ensures that the specification is inter-
nally consistent and consistent with the environment. Note that the two proofs together
imply that S, K, and R are consistent with each other.”

If the satisfaction of these conditions marks the end of RE in any systems engi-
neering project, then we can give a compact formulation of the default problem that
RE should solve, which we call the Default Requirements Problem hereafter:

Definition 1. Default Requirements Problem (DRP): Given a set R of require-
ments, and a set K of domain knowledge, find a specification S, such that § satisfies
the following conditions:

1. There is a proof of R from K and S, written K, S - R,
2. K and S are consistent, written K, St/ | .

1.3 Issue: What if the System is an Adaptive System?

A system is an Adaptive System (AS) if it can detect differences between its design-
time and run-time requirements and environment conditions, uses feedback mech-
anisms to analyse these changes and decide, with or without human input, how to
adjust its behaviour as a result.

There is nothing in the DRP which makes it specific to a system class. This would
suggest that the RP for AS is a subclass of DRP, in the sense that it is the DRP, with
some additional properties that make it specific to the Adaptive Systems class.

It is important to know whether RPAS is a subclass of the DRP. According
to Zave & Jackson, DRP “establish[es] minimum standards for what information
should be represented in a requirements language” [61].

But this is not only important because of the interest in the design of languages
for the representation of requirements, domain knowledge, and specifications of
ASs.

More generally, if it is the valid conclusion, then there are existing RE tools
(representation languages, methods, algorithms, etc.) that should be used in RE for
AS, and the open question is how to specialise them to AS.

If it is not the valid conclusion, then the issue is to know which of the existing
research is relevant for solving RPAS, both in RE and elsewhere, and what new
research is needed. In both cases, discussing the validity of the conclusion above
should provide relevant input for future research on RE for AS, and relate it to the
default view of RE.

4

1. J. Jureta

1.4 Contributions: Requirements Problem for Adaptive Systems

and its Relationship to the Default Requirements Problem

This paper has three parts:

1. Part one runs from Section[2]to Section[3] It argues that the Requirements Prob-
lem for Adaptive System (RPAS) is different from the DRP, and that it is not a
subclass of the DRP. This is argued in the following steps:

a.

a.

d.

The starting point, developed in Section 2] is the observation that DRP is the
minimal RP, in the sense that if something is removed from it, there is no
meaningful problem left to solve.

Minimality suggests that there may be similarity between the DRP and every
other RP, including the RPAS. The second step of the argument, developed
in Section E} is the observation that the DRP is not the superclass of all RPs,
despite its minimality. This is argued by showing that, if we want to compare
specifications when solving an RP, and we do it in order to choose the one that
is somehow the optimal one, then that RP is not a subclass of the DRP.

. The third step of the argument, in Section 4] shows that to want the optimal

specification as a solution to an RP, is not a new idea in RE. It has been studied
in research on non-functional requirements. We argue that, once there are non-
functional requirements in an RP, then this RP is not a subclass of the DRP.
The fourth step of the argument, in Section [5} shows that optimality and
non-functional requirements are central to Adaptive Systems engineering, and
therefore, that RPAS is not a subclass of the DRP.

Part two proposes a general definition of the RPAS. This is done in four steps:

Section [6]introduces new concepts, of problem and solution spaces, of criteria
and parameters, and so on, for defining RPs in general. The new concepts are
motivated by the discussion in part one of the paper.

Section[7|connects the discussion of optimality to the new concepts introduced
in Section[6l

Section (8] introduces a new class of RPs, called Requirements Optimisation
Problems, used to define the RPAS.

Section[9 defines the RPAS.

. Part three, in Sections [TOHIZ] relates the RPAS to mathematical optimisation

in general, to decision analysis in management science, and to expected utility
theory in economics.

2 The Default Requirements Problem is a Minimal RP

DRP is a minimal RP, in the sense that if any of its parts is removed, the rest is not
an interesting problem for RE, or no problem at all.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 5

To see this, consider the following rewriting of the DRP. The only difference
from Definition [I] is that there are now labels on parts of the problem statement.
Labels are used as follows: to label the statement “it is raining” with the label X, we
write [it is raining: X].

Definition 2. Default Requirements Problem (DRP): Given [a set R of require-
ments: R], and [a set K of domain knowledge: K], find [a specification S: S], such
that [S satisfies the following conditions: DR]:

1. [There is a proof of R from K and §, written K, S I R: Satisfaction Condition],
2. [K and S are consistent, written K, St/ 1 : Consistency Condition].

There are labels on six parts of the problem statement. R refers to the set of
requirements, K to the set of domain knowledge, and S to the specification. DR
refers to the decision rule, that is, a rule stating what the thing to find, namely S,
needs to satisfy, in order for it to be a solution to the problem. The Satisfaction
Condition refers to the condition that there should be a proof of R from K and S, and
the Consistency Condition to the consistency of K and S.

It should be fairly straightforward to notice that removing any one of the labelled
parts leaves no problem at all, or no problem of interest to RE:

e If Ris removed, then Satisfaction Condition has to go too, and this remains:

Given [a set K of domain knowledge: K], find [a specification S: S], such that [S satisfies
the following condition: DR]: [K and S are consistent, written K,S I/ L.: Consistency
Condition]

Any S which is consistent with K is a solution to this problem, making this an
uninteresting problem for RE, given that the any solution to this problem is de-
signed independently from requirements.

e If K is removed, then this remains:

Given [a set R of requirements: R], find [a specification S: S], such that [S satisfies the
following conditions: DR]:

1. [There is a proof of R from S, written S - R: Satisfaction Condition]

2. [R and S are consistent, written R, S t# L.: Consistency Condition]

Note that the Consistency Condition is changed above; another option is to re-
move the Consistency Condition altogether, rather than rewrite it so that R and S
have to be consistent. In both cases, what remains is not a relevant problem, since
it says that any specification, including those defined independently from the en-
vironment conditions, will be a solution, as long as it satisfies the two conditions
above.

e If the Consistency Condition is removed, then every inconsistent specification
becomes a solution. This happens if |- is understood as the syntactic consequence
relation of classical logic. This relation, then, satisfies satisfies the ex falso quod
libet proof pattern, which is that anything follows from an inconsistent set of
formulas. Here, it means that if S+ |, then K, S I R, whatever the content of R
and K.

o If the Satisfaction Condition is removed, the result is the same as removing R.

6 1. J. Jureta

3 The Default Requirements Problem is not the Unique RP

The conclusion of this section will be that the DRP is not the unique RP, and there-
fore, that DRP is not the superclass of all RPs.

Section explains what it means for an RP to be unique, and gives the main
reason why it matters to know whether the DRP is unique. Section [3.2]lists proper-
ties that an RP can inherit from the DRP. Section [3.3] gives three RPs different from
the DRP, and discusses what properties they inherit from the DRP, and in particular
if they inherit all its properties. Section defines the optimality property, which
is implicit in the DRP. Section argues that there are RPs which have a different
optimality property than the DRP, and therefore, are not subclasses of the DRP.

3.1 Uniqueness Matters because of Inheritance

Uniqueness matters, because if DRP is the unique RP, then all RPs have at least the
same properties as DRP. And if this is the case, then if we know how to solve DRP,
this should help design ways to solve RPs in any other RP class.

Now, it may seem obvious that RE involves so many different problems, such as,
for example, those related elicitation and negotiation, which look nothing like the
DRP. And so, the conclusion from that already is that there is no unique RP.

However, any elicitation problem, negotiation problem, and so on, which tends
to arise when doing RE, is really a problem that arises only because a system design
needs to be made or changed. If elicitation is done without the aim of making or
changing a system design, documented as a specification, then that problem is not
an RE problem at all.

The unique RP, if there is one, would be the unique root of the taxonomy of RPs.
This would be the taxonomy of problems of designing systems. Designing the system
is the central problem for RE, one that gives the motivation for solving many other
problems that arise when doing RE. These other problems, however difficult they
may be, are the side effects that we have to deal with, because we are interested in
designing systems.

3.2 What Can an RP Inherit from the DRP?

To see if an RP is a subclass of another, it is necessary to define what one can inherit
from the other. If an RP X is a subclass of an RP Y, then X will inherit all the
properties of Y.

Definition 3. Default Requirements Problem properties: The properties that an
RP can inherit from DRP are motivated by the parts identified in Definition[2] These
properties are as follows:

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 7

1.

2.

R Property: RP recognises that there is a category of information which describe
conditions that are desired.

K Property: RP recognises that there is a category of information which describe
conditions that hold independently from the system-to-be, and that the system-
to-be has to live with.

. S Property: RP recognises that there is a category of information which describe

the system-to-be.

. KSR Property: RP recognises that there are no categories of information other

than those referred to by R, K, and S properties, which are relevant when solv-
ing DRP. In other words, all other kinds of information that may be useful are
specialisations of those identified by the said properties.

. Satisfaction Property: RP requires any solution to it to be such that there is proof

that, if conditions described in K hold, and the system is implemented according
to S, then conditions in R will be satisfied.

. Consistency Property: RP requires that any solution to it be such that the con-

ditions described in the K and S properties are not logically inconsistent.

. Decision Rule Property: A description of a system-to-be is a solution to the RP

if it satisfies the Consistency Property and the Satisfaction Property.

3.3 A Case of Complicated Inheritance

To illustrate inheritance between RPs, this section discusses three RPs.

3.3.1 RP1

The following is the first RP, named RP1I.

RP1: Given [a set G of goals: G], and [a set K of domain knowledge: K], find [a specifi-
cation S: S], such that [S satisfies the following conditions: DR]:

1. [There is a proof of goals in G from K and S, written K, S I G: Satisfaction Condition],
2. [K and § are consistent, written K,St/ 1 : Consistency Condition].

RP1 differs from DRP in that it has no mention of requirements R, but says that

goals in G should be satisfied. However, the set of goals G has the exact same role
in RP1 as requirements R has in DRP: both are used to capture information about
desired conditions that the system-to-be should satisfy. RP1 is therefore a subclass
of DRP, because it inherits all properties, including the R and KSR properties.

3.3.2 RP2

The second RP is as follows.

8 1. J. Jureta

RP2: Given [a set R of requirements, partitioned onto mandatory requirements RM™ and
non-mandatory requirements RVM: R], and [a set K of domain knowledge: K], find [a
specification S: S], such that [S satisfies the following conditions: DR]:

1. [There is a proof of mandatory requirements in RM C R from K and S, written K,S - RM:
Satisfaction Condition],

2. [K and S are consistent, written K,St/ 1 : Consistency Condition].

The difference is between RP2 and DRP is that the set of requirements R is
partitioned onto mandatory and non-mandatory requirements in RP2. A solution
therefore does not need to satisfy all requirements in R, but a subset thereof. RP2 is
equivalent to DRP when all requirements in R are mandatory.

There are two ways of looking at inheritance between RP2 and DRP. One is to say
that RP2 specialises the concept of requirement onto mandatory and non-mandatory
requirement, and rewrites the Satisfaction Condition accordingly. The other is that
RP2 is obtained by taking that R in DRP includes only mandatory requirements,
and saying that there are other, non-mandatory requirements which remain outside
DRP; in this second case, RP2 is the same problem as DRP, with the added set
of non-mandatory requirements, which remain unrelated to the specification, and
thereby not a factor that influences the design of the specification.

In both cases, RP2 looks like a subclass of DRP, because non-mandatory require-
ments play no role in the problem or the solution. RP2 thereby inherits all properties
of DRP, and adds two properties: one is that any requirement is either mandatory or
non-mandatory, and the other that a solution should satisfy all mandatory require-
ments.

Returning to the more general discussion, recall that in Section [2] it was argued
that the DRP is minimal by looking at what remains after some part of it is removed.

There is a clear correspondence between parts of the DRP in Definition [2]and the
properties in Definition 3]

Due to that correspondence, it follows that if a part is removed, then what re-
mains will fail to satisfy all the DRP properties. Therefore, the set of properties in
Definition [3]is minimal.

3.3.3 RP3

It was straightforward to determine what RP1 and RP2 inherited from DRP. RP3 is
a more complicated case.

RP3: Given [a set R of requirements, partitioned onto mandatory requirements RM and
non-mandatory requirements RV : R] and [a set K of domain knowledge: K] , find [a
specification S: S], such that [§ satisfies the following conditions: DR]:

1. [There is a proof of mandatory requirements in RM C R from K and S, written K, S - RM:
Satisfaction Condition],

2. [K and S are consistent, written K,St/ 1 : Consistency Condition],

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 9

3. [There is no other specification " which satisfies both the Satisfaction Condition and
the Consistency Condition, and in addition satisfies more of the non-mandatory require-
ments in R’ than does S: Optimality Condition.]

RP3 partitions requirements onto mandatory and non-mandatory. In RP2, the
non-mandatory requirements had no influence on which specification will be the
solution. In RP3, the non-mandatory requirements appear in the Optimality Condi-
tion, that a specification has to satisfy in order to be the solution.

This suggests that the solution concept in RP3 is a subclass of the solution con-
cept in RP2. In RP2, a solution is any specification which satisfies the Satisfaction
Condition and the Consistency Condition, while in RP3, the specification also has to
satisfy the Optimality Condition. In other words, the extension of the RP3 solution
concept is a subset of the RP2 solution concept.

3.4 Optimality in the Default Requirements Problem

The Optimality Condition in RP3 is significantly different from the Satisfaction
Condition and the Consistency Condition, because the Satisfaction Condition and
Consistency Condition are verified on a single specification, and it does not matter
what other specifications there may be, while to verify if the Optimality Condition is
satisfied, it is necessary to compare two or more specifications.

It is therefore not possible to check if the Optimality Condition in RP3 is satisfied,
when looking at one specification independently from others.

If we found a single specification S, which satisfies the Satisfaction Condition
and the Consistency Condition, then in absence of at least one other specification
S’ with which to compare S in terms of how many non-mandatory requirements
they satisfy, there will be no justification to the claim that S satisfies the Optimality
Condition.

The DRP has its own notion of optimality, which is implicit in the Decision
Rule Property.

To see it, suppose that there are three specifications Sy, S», and S3, and that they
all satisfy the Satisfaction Condition and the Consistency Condition for the same set
of requirements R and the same domain knowledge K. Which of the three specifica-
tions is the optimal one?

The Decision Rule Property says that a specification is the solution if it satis-
fies the Satisfaction Condition and the Consistency Condition. As there is no other
property that a specification needs to satisfy to be a solution, the only remaining
conclusion is that any specification that satisfies the Satisfaction Condition and the
Consistency Condition is optimal.

To make explicit the notion of optimality in DRP, we add the following property
to the DRP.

10 1. J. Jureta

Definition 4. Optimality Property for the DRP: RP recognizes that if there are
more than one description of the system-to-be, all of which satisfy the Satisfaction
and Consistency Properties, then they are all equally desirable.

This leads to the following revision of the properties that an RP can inherit from
the DRP.

Definition 5. Default Requirements Problem properties (revised): The proper-
ties that an RP can inherit from the DRP are R, K, S, KSR, Satisfaction, and Con-
sistency Properties from Definition 3} the Optimality Property from Definition 4]
and the following property:

e Decision Rule Property: A description of a system-to-be is a solution to the RP
if it satisfies the Consistency, Satisfaction, and Optimality Properties.

3.5 How are Optimality and Uniqueness related?

Optimality is important, because it is related to uniqueness in the following way:

In order to establish if a specification is the optimal specification and therefore
the solution to the RP, it is necessary to compare specifications; any comparison of
specifications requires having in the RP the information about comparison criteria;
such information is not part of requirements, domain knowledge, or of the specifi-
cation in the DRP, which violates the KSR Property, and therefore, the DRP is not
unique.

To understand the above, suppose that in a concrete systems engineering project,
we have the set R of requirements and K of domain knowledge. In RP1, we simply
called every requirement a goal, so that both the RP1 and the DRP have the same
set of specifications, each of which can be a solution.

It makes sense therefore to conclude that the RP1 is a subclass of DRP, or that
they are equivalent RPs, because for any given R and K, solving the RPI or the
DRP will involve choosing one solution from the same set of potential solutions.
Moreover, in absence of comparison criteria in either the DRP and RP1, we can
choose any of the specifications as the solution.

For simplicity, the set of all specifications that we can choose one solution from,
when solving an RP, will be called the Solution Space of that RP.

So the Solution Space is the same for RP1 and DRP, for the same given sets of
requirements and domain knowledge.

Despite the similarities between RP2 and DRP, their Solution Spaces are differ-
ent. In DRP, all requirements in a given set R of requirements must be satisfied. In
RP2, that same set is partitioned onto mandatory RM and non-mandatory RVM re-
quirements. It follows that the Solution Space of RP2 for given requirements R and
domain knowledge K is the same as the Solution Space of DRP defined over those
same requirements and domain knowledge only if RM = R and RN = (. Instead,

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 11

if any member of R is in RN™, then it is by definition of RP2 not in RM, and conse-
quently, the Solution Space of RP2 will not include the same specifications that the
Solution Space of the corresponding DRP would.

If an RP X is a subclass of another RP Y, then for the same given requirements
and domain knowledge, every solution to X should also be a solution to Y. This is
not the case in RP2.

The RP3 is not a subclass of the DRP for the same reason: as soon as some
members of R are in R¥™ | the Solution Spaces of RP3 and DRP will differ, as some
specifications that can be solutions to the RP3 will fail to satisfy the non-mandatory
requirements in RV and therefore cannot be in the Solution Space of the DRP
defined over the same set of requirements R and the same domain knowledge K.

Now, it is fair to observe that RP2 is an odd RP, because there seems to be no role
for non-mandatory requirements in it. But this same observation cannot be made
for RP3, where non-mandatory requirements serve to define the criterion for the
comparison of specifications in the Solution Space; that criterion is given in the
Optimality Condition of RP3.

It is interesting to note that the conclusion we got here is counter-intuitive. To
make RP3, we did three operations: (i) we specialised requirements onto mandatory
and non-mandatory ones, (ii) revised the Satisfaction Condition, so that it reflects
the idea that only mandatory requirements must be satisfied, and (iii) added the
Optimality Condition. The three operations are non-controversial; we could not do
(i) without also doing (ii), and doing (i) also made no sense without doing (iii).

The result is counter-intuitive, because the operation (i) looks simply like the
specialisation of a concept that is already there in the DRP, and (iii) as just us asking
that every solution satisfies an additional property, and so a specialisation of the
DRP solution concept. If we look at each of these operations in isolation, they look
like we are merely adding detail to what the DRP already had.

But together, the three operations resulted in a different problem to solve, because
by solving RP3, we can get solutions to RP3 which are not solutions to DRP. Hence,
RP3 cannot be a specialisation of the DRP.

4 Non-functional Requirements as Comparison Criteria

Non-functional requirements are an important source of comparison criteria. This
section will argue that, if there are non-functional requirements in an RP, and we
extract from them the criteria for the comparison of specifications, and we want
to find the optimal specification according to those criteria, then the RP is not a
subclass of the DRP.

Suppose that stakeholders give us non-functional requirements, also called qual-
ity requirements [6} 45]. For an ambulance system, an example can be the require-
ment that “ambulances should quickly arrive at incident locations”; denote this re-
quirement r1. There is no universal criterion or industrial standard for just how
much time amounts to “fast” in this requirement.

12 1. J. Jureta

If we wanted to keep solving the DRP in the presence of non-functional require-
ments, we could do this by replacing each non-functional requirement by a variant,
the satisfaction of which is binary. For example, “on average, ambulances should
arrive to incident locations within 10 minutes”; denote this r2. And we could then
have such K and S, that we can prove r1 from them. All looks as if we are still
solving the DRP.

But this transformation of r1 misses the point. While r1 looks like a require-
ment, its role in the RP is completely different than that of r2.

The non-functional requirement r1 serves as a criterion for the comparison of
alternative specifications, because it states a preference relation: by saying that
ambulances should quickly arrive, it states that, when given two systems, one in
which ambulances arrive slower, that one will — over this criterion only — be strictly
less desirable than the system in which ambulances arrive faster. This is not at all
the same as saying that ambulances should arrive within 10 min, since in that case,
any system which satisfies this is good enough, while in the former case, only that
system which achieves — among all those cosnidered — the shortest time for the
ambulance to arrive, is good enough (again, if this criterion alone is considered,
because when there are many criteria, perhaps some other criterion will have more
importance).

Different specifications, each associated to a different design of the system-to-
be, may result in different average time for an ambulance to arrive at the incident
location. Some specifications will result in systems that will be faster, others slower.

There is, therefore no sense in placing r2 in R, because how fast one specifica-
tion is (or, to be precise, how fast we expect the resulting system to be), is relative
between specifications. We cannot prove it from K, and S for one specification, be-
cause we have to take into account other, alternative, specifications.

Suppose that we do not accept the arguments above, and we want to do something
to non-functional requirements in order to still keep solving the DRP. Here are some
possible attempts to repair the situation:

1. We could rewrite r1 as r3, with r3 denoting the statement “specification S is
the specification with the lowest time for an ambulance, on average, to arrive
at an incident location”, and put r3 in R. But notice that r3 is a rather odd
requirement, since it is about the relationship between different specifications.
This is also a practical problem, as it is not clear how we could prove r3 from K
and S, unless K and/or S also are about, or somehow mention other specifications.

2. We could say that r1 is not a member of R, but stays outside K, S, and R, and that,
to enable the comparison of specifications, we should add a variable, denote it
q, for “average time to arrive at incident location”, and that we should simulate,
or estimate otherwise the value of g for each specification. If the various non-
functional requirements result in a set Q of such variables, we could revise DRP
by requesting that, for each specification S;, this holds:

K,Si-R,Q; ey

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 13

where Q; is the set of value assignments to all variables in Q, produced by the
specification S;. We could then compare different specifications by the values
they assign to variables, whereby we chose the variables to quantify level of
satisfaction of non-functional requirements; for example, we could assume that
there is a scale for time for r1, where values indicate the average time to arrive
at an incident location.

. We can replace syntactic consequence F with another relation; if we denote the

new relation with |~, we would need to define it in such a way that we have:
K,Si~R (2)

if and only if (i) R is provable from K and S;, and (ii) there is no other spec-
ification §; that better satisfies the non-functional requirements. Defining “bet-
ter” requires us to define a way to aggregate, for each specification, the levels at
which it satisfies all non-functional requirements, and then compare that aggre-
gate score with those of all other specifications. The best specification would be
the one with the highest score.

In each of the three approaches above, we made significant changes to DRP, in or-

der to accommodate non-functional requirements. That is, we made new problem:s,
different from the DRP:

In the first approach, we revised the non-functional requirement r1 as r3 and
placed r3 in R. However, r3 is about other specifications, yet DRP is about
conditions that a single specification should satisfy, independently from others.
In the second approach, we had to add Q;, the assignment of values to measures
of non-functional requirements. It is not a problem to have Q; as a subset of R.
However, if we want to choose the specification S; which gives the most desirable
Q;, then we are not solving the DRP, because the part DR in DRP does not
say that we should choose the most desirable specification which satisfies the
Satisfaction Condition and the Consistency Condition. It actually says nothing
about how desirable the specification ought to be, relative to other specifications
which also satisfy these conditions.

Finally, in the third approach, we replaced the provability condition with a rela-
tion |, which has to take into account the level to which non-functional require-
ments are satisfied in all considered specifications.

To summarise, while DRP is minimal, it is not unique. As soon as there is in-

formation about criteria for the comparison of specifications in the Solution Space
and we are interested in choosing the specification which best satisfies these non-
functional requirements (whatever “best” may mean precisely in a specific project),
then we are solving a different problem than DRP.

14 1. J. Jureta

5 Optimality and Comparison are Central to Adaptive Systems

At this point, the important conclusion is that the DRP is not the superclass of RPs,
in which we are interested in finding the optimal specification, and we have infor-
mation that lets us compare specifications.

The claim in this section is that RPAS is not a subclass of the DRP, because opti-
mality and comparison play a central role in it: namely, adaptation amounts to the
switching between alternative ways of satisfying requirements, and therefore, each
time the system needs to adapt, it needs to compare alternative ways of adapting,
and choose the optimal one, among those that are available.

To further clarify this discussion, the rest of this section uses a trivial and hypo-
thetical example, but sufficient to support these claims.

5.1 Adaptation as Switching

In this example, by qualitative requirement, we mean a requirement for which we
say that it is either satisfied or not, not satisfied to some extent. By quantitative
variable requirement, we mean a requirement that assigns a desirable value or range
of values to a variable, which is not binary.

We have only two qualitative requirements r2 and rB to satisfy. We know that we
can satisfy rA by implementing one of five different functionalities, denoted rAF1
to rAF5, and rB by implementing another five different functionalities, denoted
rBF1 to rBF 5. For simplicity, let all ten functionalities be different and not related
in terms of refinement or parthood, that is, they are neither more detailed variants of
one another, nor parts of one another.

With two qualitative requirements and 5 functionalities satisfying each, there are
25 combinations of the 10 functionalities. But, some functionalities are not compat-
ible. This means that we cannot make a system which includes them both. Some
combinations of functionalities therefore do not give a specification which satisfies
both rA and rB.

The part of the example introduced so far can be drawn as in Figure [T} There,
filled circles are specifications, that is, combinations of functionalities that satisfy
both rA and rB. Empty circles are incompatible combinations of functionalities,
and since we cannot make a system that has those functionalities, these empty circles
are not specifications.

If our problem was to find one combination where functionalities are compatible,
and which satisfies both r2 and rB, then this can be any one of the 20 specifications
in Figure[T]

Consider adaptation to the failure of a functionality. If we were to design a system
according to one specification among those in Figure |1} suppose that we chose, for
example, S4, so that the system has functionalities rAF4 and rBF1. If rAF4 fails,
the system would stop working as expected. If it were an Adaptive System, then it
would be designed so as to switch to another functionality at run-time, for example,

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 15

G e —o--e-—

4

-—9--
|
|
rA
F4

r .
L S S S
R s S S
B L st | L
BB ER
. | | 56!

(74

____¢___

rA
F5

Fig. 1 rA and rB are two qualitative requirements that both need to be satisfied by a system.
rAF1 to rAF5 are alternative functionalities that satisfy rA, while rBF1 to rBF 5 are alternative
functionalities that satisfy rB. Filled circles are combinations of functionalities that satisfy both rA
and rB, and are thereby alternative specifications of a system; empty circles denote incompatible
combinations of functionalities, and are not specifications.

from rAF4 to rAF2. From the perspective of design-time, this amounts to a switch
from the design given in specification S4, to that in S2. This is illustrated in Figure
2l

Now, assume that we have two quantitative variable requirements to satisfy, in
addition to rA and rB. The first relates to scalability and the second to how the
system compares to its competitors. Let Varl be the variable in the first, and Var2
in the second quantitative variable requirement. Var1 can be “number of users that
can simultaneously use the system” and Var2 “number of products available for
purchase”.

We prefer large to small values for both Varl and Var2, and we cannot accept
values that are below some threshold. This is drawn in Figure [3] where T1 is the
threshold for Varl and T2 for Var2, so that the shaded area shows all acceptable
combinations of Var1l and Var2 values.

If the system were running according to S4, then it satisfies all four requirements,
as its values over Varl and Var2 are above their respective thresholds. If rAF4
fails, the system would need to switch from S4 to either S3 or S5 in order to still
satisfy all four requirements; if it switched to S2, it would satisfy rA, rB, and the
requirement on Var1, but not the requirement on Var2.

As long as the system can switch from one specification to any other specifica-
tion, provided that the latter satisfies all requirements and domain knowledge, then
we can capture with the DRP the problem of designing that system’s specification.

16 1. J. Jureta

B
F5 >

F4

B

F3 ~ ®--

B

F2 ~ -

G S S S
.

Fig. 2 System runs according to specification S4. Then, functionality rAF4 fails, and the system
activates functionality rAF2 instead, switching thereby from specification S4 to specification S2.

Var1
S3
*
_____ s2 |
L 4 ! s5
_____ do
B
I | s4 !
————— —|-———————————-|-———— |
: N S
T | ! - '
s1 | | ! i
-——@ | : | I
| S6 | ! !
I : i |
| ! I
| : I
: ! l

»
>

T2 Var2

Fig. 3 Variables Varl and Var2 quantify the level of satisfaction of two quantitative variable
requirements. Hypothetical simulations of specifications S1 to S6 yield values show in the figure.
T1 is the threshold value for Var1, and T2 for Var2.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 17

5.2 Switching and Optimality

Switching to any specification fails to capture that not all alternative specifications,
that the system can switch to, are equally desirable. The goal is to switch to the
one that is optimal with regards to the requirements and domain knowledge, that the
system is sensing.

This concern with whether the specification to switch to, is the optimal specifi-
cation among those that we can switch to, clearly distinguishes RPAS from DRP.

We said that we prefer higher values of Varl and Var2, or in other words, we
said that we have non-functional requirements which can be interpreted as suggest-
ing that we prefer higher values of these variables. To make this more precise, we
need to say which combinations of values we prefer over others. Since the region
above the thresholds T1 and T2 is large, it is interesting to indicate (i) the shape
of indifference curves in that region, and (ii) the direction where these indifference
curves are over more desirable combinations of Varl and Var2 values.

Figure [4] shows hypothetical indifference curves in the region above thresholds
T1 and T2. Each indifference curve is the set of Varl and VarZ2 value combina-
tions that are equally preferred. So every specification that has Varl and Var?2
values on the same indifference curve as S3 is equally preferred to S3. The arrow
indicates the direction where Var1l and Var2 value combinations are preferred, so
that any specification on the indifference curve with S5 is strictly preferred to any
specification on the indifference curve with S3.

Having clarified with indifference curves what we mean by preference for higher
Varl and Var?2 values, we now go back to Figure E} There, we had 20 alternative
specifications. If we want to see them as subsets of S in DRP, they are 20 alternative
configurations of the same system. Moreover, we said that adaptation amounts to
moving from one to another of these configurations, based on sensory input of the
system, and feedback mechanisms that indicate what configuration to switch to. We
also said that all this can be captured in DRP.

By adding the two quantitative variable requirements, with their Varl and
Var?2, we had restricted the set of acceptable configurations to some subset of the
20 shown in Figure|[I}

Given several configurations, all above T1 and T2 thresholds, and all satisfying
rA and rB, which one should we choose?

The answer is simple: given the indifference curves, we should choose any con-
figuration which is on the the most desirable indifference curve. More generally, we
want the system to switch, every time it needs to adapt, to the configuration that is
the most desirable, among those that are feasible.

This is not to say that we cannot capture also this notion of optimality in DRP.
For example, we can have as the only member of R in DRP, the proposition that
there should be no feasible configuration which is on a more desirable indifference
curve than the chosen configuration. We can, therefore see RPAS as a subclass of the
DRP, although doing so seems rather odd, for there were no considerations of con-
figurations, adaptation, preference, uncertainty, or optimality in defining the DRP.

18 1. J. Jureta

Var1

T

Fig. 4 Hypothetical indifference curves over value combinations of Varl and Var2. One in-
difference curve includes all Varl and Var2 value combinations that are equally desirable. For
example, any specification on the same indifference curve as S3 is equally desirable as S3. The
arrow indicates the direction in which value combinations are more desirable. Therefore, S5 is
preferred to S3, and S3 is preferred to S4.

6 Requirements Problem and Solution Spaces

We start with two simple definitions; they clarify what we will mean by the terms
Specification and Solution in the rest of the paper.

Definition 6. Specification: A Specification is a description of a design of a system.

Definition 7. Solution: In a given RP, a Solution is a Specification such that, if
we chose to commit to making the system according to that Specification, then we
consider that we have solved that RP.

Another way to think about the Solution and Specification, is that the Specifica-
tion is a candidate Solution in an RP that we are solving.

Hereafter, and in general in the paper, if we define a term, then we will capitalise
it throughout. The capitalised term should be read as it was defined.

The conclusion that not all RPs are subclasses of the DRP, and that RPAS is also
not a subclass of the DRP, means that there are many RPs that we may want to define
and solve, and that each may have many Specifications, some or one of which is the
optimal one, and thereby the Solution.

The goal now is to narrow down these ideas, and we will do this by defining the
notions of Problem Space and Solution Space. If we agree on what these spaces are,
then it will be easier to define the RPAS.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 19

6.1 Problem Space

We call it the Problem Space, because it has some number of dimensions, and each
dimension corresponds to something that we can evaluate a Specification for.

For example, if we have a DRP instance with one requirement |R| = 1 and no
domain knowledge |K| = 0, then the Problem Space would be one-dimensional, a
line, where each point refers to a level of satisfaction of the single requirement in
R. If that requirement had a scale of satisfaction with 10 levels, then there would
be exactly 10 points in the Problem Space. If it had two levels of satisfaction -
satisfied or failed - then the Problem Space would have two points only. If the level
of satisfaction was a real number between some maximum and minimum, then there
would be an infinite number of points in the Problem Space.

In an RP which satisfies the R and the K properties, we can evaluate if a Spec-
ification satisfies a requirement, so that members of R would induce dimensions in
the problem space. But we can also evaluate if the Specification satisfies or fails
constraints from K, which is why members of K would also induce dimensions in
the problem space.

To remain general, we need to avoid being constrained by the DRP. In particular,
we want to be independent from the properties K and R, that is, from the catego-
rization that the DRP imposes on criteria that Specifications are evaluated against.
We do this by introducing the concept of Criterion in the definition of the Problem
Space concept.

Definition 8. Problem Space: Set of points, where each coordinate of each point
corresponds to the value of a Criterion.

Definition 9. Criterion: A variable, such that (i) we can establish its value for each
Specification, and (ii) some of its values are more desirable than others, regardless
of which Specification is being evaluated.

Various kinds of information used when solving an RP can produce Criteria for
a Problem Space. The obvious example are requirements that are either satisfied or
not. For each of those, we have one Criterion. non-functional requirements are more
complicated, since it can be hard to find suitable variables to measure their level of
satisfaction. Such variables would correspond to Criteria.

Criteria do not come from requirements only. Domain knowledge may indicate
laws that the system-to-be should comply with, and each norm from the law may
give a Criterion. Each of those Criteria would have two values, does comply and
does not comply.

There is a nuance to keep in mind: some requirements, for example, may be re-
finements of other requirements, so that there can be relations between the value of
different Criteria for the same Specification. For example, the value of a Specifi-
cation on one Criterion may be fully determined by values of that Specification on
other Criteria. The following example illustrates this.

In ambulance services, suppose that we have this statement: “Ambulances arrive
at their incident locations”.

20 1. J. Jureta

We will take this to be a requirement, and abbreviate it with R (AmbArrive),
where AmbArrive refers to the statement above, and R that this statement is a
requirement.

We can make this requirement more detailed, by saying that it will be satis-
fied if these more specific requirements are satisfied: R (IdentAmb) for “Iden-
tify available ambulances”, R (ChooseAmb) for “Choose ambulance to dispatch”,
R (AssignAmb) for “Assign ambulance to incident”’, R (MobilizeAmb) for
“Dispatch the ambulance to the incident location”, R (ConfirmMob) for “Con-
firm that the ambulance was dispatched”.

In other words, we refined R (AmbArrive) onto five other requirements. As
this means that if all five are satisfied, then R (AmbArrive) is satisfied, it also
means that in the Problem Space:

there is a Criterion for each of the six requirements above,

each of these Criteria allows two values, satisfied or not satisfied (this is the case
if we do not want to allow degrees of satisfaction for these requirements, but we
see them as either satisfied or not),

e there is a function that ties the satisfaction of the five more specific requirements
with the refined requirement, in that the latter is satisfied only if all five are satis-
fied. This means that the value of the Criterion corresponding to R(AmbArrive)
is function of values for Criteria for the five other requirements.

In the example in Section we had two requirements, rA and rB. We eval-
uated each as either satisfied or not. It follows that our Problem Space there has
two Criteria, r1 and r2. If we further assume that the satisfaction of one require-
ment is independent from the satisfaction of the other, then any Specification can
correspond one of four points in the Problem Space. This is illustrated in Figure 3]

A more complicated Problem Space may involve non-functional requirements,
which give Criteria that can take a real value from some range. Each Specification
evaluates to one value of that Criterion, so that the number of positions that Specifi-
cations can take is infinite.

Figure [0] illustrates the Problem Space defined by one binary requirement and
two variables quantifying the degree of satisfaction of non-functional requirements.
There, the Problem Space amounts to two planes, one where a Specification has the
coordinates (rA not satisfied, x1,yl) and the other where a Specification’s coordi-
nates are (rA satisfied,x2,y2); x1 and x2 are values of Varl, yl and y2 of Var2.

6.2 Problem Instances

It is important to observe that Criteria define a Problem Space, not a single RP to
solve.

If we have a Problem Space made of n Criteria, we can choose exactly one RP
to solve by choosing one value of each Criterion. By choosing a point in the Prob-
lem Space, we have identified the exact requirements, domain knowledge, etc., that

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 21

A
B

B
satisfied [T Q""" - ®

rBnot | ____ O-—--—- o)

satisfied

rA not rA

satisfied satisfied A

Fig. 5 Problem space defined by two requirements rA and rB, both with two levels of satisfaction.
The satisfaction of one is independent from the satisfaction of the other. The black circle is a
position in the Problem Space where both requirements are satisfied.

any Specification should satisfy. We capture this in our terminology by adding the
following.

Definition 10. Problem Instance: A Problem Instance in a Problem Space is an
assignment of a value to each Criterion in that Problem Space.

The above is important, because it suggests that, when doing RE, we can be solv-
ing one RP instance, or we may have the freedom to choose the Problem Instance
instance to solve. This choice may be due to necessity, such as when it is not feasible
to design the system in such a way, that it maps exactly to the Criteria values chosen
in the Problem Instance.

For example, in Figure [6] the empty circle is a Problem Instance, and if choose
to solve it, then we have decided to look for Specifications which do not satisfy the
requirement rA. If we choose to solve the Problem Instance marked with the black
circle, then we will be looking for Specifications that satisfy the requirement rA.

6.3 Solution Space

The Solution Space is made of dimensions that correspond to properties which we
can design into the system.

For example, if we have in the Problem Space a Criterion that measures the
response time of a server (or more abstractly, the responsiveness of the system), then

22 1. J. Jureta

A
Var1
b2
’ 7
s s |
// / |
S — Y
________ - |
A A1 !
e g | |
| | | | | |
| | | | | |
| I oy | I
| I oy | I
| | oy | I
| | | | | I Var2
P Lx1 x2!
b I, i T
rA not satigfied)/_ __ __ __ & 7
I .
rA satisfied I _________________ L7
rA

Fig. 6 Problem Space defined by the binary requirement rA and two non-functional requirements
from Figures[T|and 3] Black circle is a point where rA is satisfied, while the empty circle is a point
where rA fails.

in the Solution Space, we are interested in what we should build into the system, to
make sure that it will achieve some value over that Criterion.
We introduce the following terms.

Definition 11. Solution Space: Set of points, where each coordinate of each point
corresponds to the value of a Parameter.

Definition 12. Parameter: A variable, such that we can choose its value for each
Specification, and this value is expected to influence the behaviour of the system-
to-be in some predictable manner.

We chose the term Parameter, because its dictionary definition indicates it is a
variable whose value we choose. This is very different from Criteria, since the idea
for them is that we obtain their values through measurement or otherwise, rather
than set or choose their values.

Parameter is a general notion, intended to be independent from what one chooses
to call the fragments of a Specification. A two-valued Parameter can capture the
common notion of functionality, as something that is either present or absent in
the system-to-be. When it can take more values, a Parameter can capture the idea
of parameterisable functionalities of the system-to-be; for example, that we can or
need to decide the resolution of a screen in an operating system, the number of
ambulances in a system delivering emergency services, and so on.

As for the Problem Space, there can be relations between values on various Pa-
rameters in the Solution Space; for example, a functionality F'1 may be decomposed

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 23

A F1
Floff _ __
s | 0
i 0 ///I
S P Y
e il
’
// |F1Qf’]_l___ __/_/__1____1
Y QO |] —— Q | 1
| | 4 | //I | , |
7 A PR N
| /)f__l__",#___l__l___/q |
|11 iF2od | 7 jF2off |
("1 A0 R
:F30| il L L L7
! T T =7
| | 4 | /
| |// |//
F3off,/ _ ./ _ ______ v
F3

Fig. 7 Solution Space that has 8 points, defined by three Parameters, F1, F2, and F 3, each of
which can either be on (in a Specification of the system-to-be) or off (not in a Specification). On or
off value of one Parameter is assumed independent from the on or off values of other Parameters.
The black circle is a position where all three are included in the Specification.

into two different functionalities F1a and F1b, so that the presence or absence of
F1 depends on the presence or absence of both F1a and F1b.

Figure [/|illustrates a Solution Space defined by three Parameters, each of which
can be either included in a Specification, or excluded from it. Figure B] illustrates
the Solution Space generated by two two-valued Parameters, and a Parameterwhose
value can be any real number between 1 and 10.

6.4 Double Decision-Making

Problem Space and Solution Space concepts make it clear that RE may involve
choosing both the Problem Instance to solve, and the Specification which solves
it. For example, it may be that we change from one Problem Instance to another
because of feasibility, while implementation cost could lead us to change from one
Specification to another.

Problem-solving in RE involves this double and interdependent decision-making,
of choosing the Problem Instance and choosing the Specification. If we were to de-
sign a process for problem-solving, then we would need to decide, for example, if
we are going to first choose a Problem Instance, and then design the Specification
to solve it, or if we would first choose a feasible Specification, and then see how to
make the least changes to it to make sure it satisfies the Problem Instance closest

24 1. J. Jureta

FPar

Fig. 8 Solution Space made of all points on the four thick black lines, defined by two two-valued
Parameters F'1 and F2, and one Parameter FPar, which can take a real value between 1 and 10.

to the one we should solve. Or if we should do something else, such as distinguish
mandatory from nice-to-have values of Criteria, and choose only among those Spec-
ifications, which satisfy all of the mandatory Criteria values.

For example, the DRP gives requirements and domain knowledge, so that we are
given the Problem Instance, and we need to incrementally design a Specification,
which should be the Solution to exactly that Problem Instance. This is because all
members of R and all members of K must be satisfied, so that all values of all Criteria
in this Problem Space are already decided.

This double decision making is an additional argument supporting the idea that
DRP is not the root of a taxonomy of RPs. There is no particular reason why we
must first choose one Problem Instance and then look for its Solution in the Solu-
tion Space. It can happen that we start from unrealistic requirements, and/or from
conflicting requirements, and that, as we proceed in problem-solving, we have to re-
vise the Problem Instance we are solving — that is, we need to move in the Problem
Space, not only in the Solution Space. And this is the implicit assumption in RE re-
search concerned with requirements inconsistency [30]], conflicts [57]], and obstacles
to requirements satisfaction [58]].

6.5 Relating the Problem Space and the Solution Space

There are two kinds of relations between the Specifications in the Solution Space
and the Problem Instances in the Problem Space:

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 25

Fig. 9 Mapping Specifications from the Solution Space (left) to Problem Instances in the Problem
Space (right). The dotted lines are instances of the Solve relation. Two Specifications X and Y
are marked in the Solution Space. If we are looking to solve the Problem Instance where rA is
satisfied, then Specification Y will not be appropriate, as it maps to the Problem Instance in which
the requirement rA fails. The Problem Space shown involves non-functional requirements, whose
degree of satisfaction is quantified with variables Var1l and Var2.

1. The Solve relation, between one Specification and one Problem Instance, used to
indicate that the former can be a Solution to the latter,

2. The Depend relation, when it makes the values of some Criteria (not necessarily
all) depend on values of some Parameters.

6.5.1 The Solve Relation

By being a point in the Solution Space, the Specification can be seen as the synthesis
of all our decisions, on what values to give to all Parameters.

Measurement or simulation of a Specification maps it to a Problem Instance in
the Problem Space. (Measurement and simulation are not the only ways; there are
others, such as relying on expert opinion, but this does matter much in this discus-
sion.) We say that if the Specification X maps to the Problem Instance Y, then X
solves Y. But since there can be many Specifications that can map to the same Prob-
lem Instance, we will say that X is the Solution of Y only if it is the one Specification
chosen among all others that are considered during problem-solving.

We need a name for the relation between a Specification in the Solution Space
and a Problem Instance in the Problem Space. This relation should exist between
a Specification and a Problem Instance, if we believe that, when that Specification
is implemented, measuring it over the Criteria in the Problem Space will result in
exactly those Criteria values that the Problem Instance has.

Definition 13. Solve is a relation from one Specification in the Problem Space to
one Problem Instance in the Problem Space. We say that Specification A Solves

26 1. J. Jureta

Problem Instance B if and only if we believe that, if the system is made according
to Specification A, and we measure the system according to the Criteria that define
the Problem Space, then we will obtain values of these Criteriawhich correspond to
the values that they have in Problem Instance B.

For a given RP, instances of the Solve relation are the result of problem-solving,
as they can be found only after at least one Specification and one Problem Instance
have been identified.

6.5.2 The Depend Relation

The Depend relation is between Parameters and/or Criteria, when their values are
interdependent. It is not restricted to being between individual points in the Problem
Space and the Solution Space. It can be used to represent that, for example, the value
of a Parameter depends on the values of other Parameters and/or Criteria, that the
value of a Criterion depends on values of other Criteria and/or Parameters, that the
value of a Parameter has to be in some range, and so on.

A simple way to think about the Depend relation, is that, any function that relates
the values of Parameters and/or Criteria is an instance of the Depend relation.

Definition 14. Depend: Given some variables, which may be Criteria and/or Pa-
rameters, if their values are interdependent, then there is an instance of the Depend
relation between these variables.

Figure |10] gives an illustration of a function where the value of Criteria depend
on the value of Parameters.

7 Optimal Specifications in Problem Spaces

Our definition of the Solution concept in Section [6] only says that the Solution is
that Specification which we commit to, as the Specification which the system-to-be
should implement.

In contrast, the discussion of optimality in Section |3| used the obvious premise
that it is desirable, in general, to commit to the Specification which is somehow the
“best” relative to those Specifications that are considered during problem-solving.

The goal now is to relate these two ideas, of optimality of, and commitment to a
Specification, and do so using the concepts and relations introduced so far.

Relating commitment and optimality means using the following revised Solution
definition.

Definition 15. Solution (replaces Definition [7): In a given RP, and thereby for its
Problem Space and Solution Space, the Solution is the Optimal Specification.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 27

Fig. 10 If a point is chosen along the highlighted line in the Solution Space (left), then this results
in a point on the highlighted area in the Problem Space (right). The figure illustrates the Depend
relation between the values of the Parameters Fpar, F1, and F2, and the values of Criteria rA,
Varl, and Var2.

The revision reflects the idea that relating commitment to optimality amounts to
asking that we commit to the Specification which satisfies those properties that op-
timality imposes. This is different from the original Solution in Deﬁnition where
the only property of the chosen Specification is that we commit to it, regardless of
how exactly it relates to other Specifications.

7.1 Preference and Utility in Problem Spaces

The revised Solution concept leads to the question of when a Specification is also an
Optimal Specification, in the terminology of Problem Spaces and Solution Spaces.

To answer this, recall that Specifications in themselves are interesting only be-
cause they describe systems, which, if they are implemented accordingly, would
achieve specific values over all of the Criteria in the Problem Spaceﬂ It is because
it manages to map to some Criteria values that a Specification, or a set of Specifica-
tions is of any relevance in problem-solving.

The fact that we are designing Specifications because we are in fact interested in
some values of Criteria, means that whether a Specification is better than another
is an issue that is solved not by looking only at the Solution Space, but at where a
Specification maps to in the Problem Space.

I As we cannot make all systems that implement all the Specifications, and then measure values of
Criteria on systems themselves, we make the simplifying assumption that it is a Specification that
maps to points in the Problem Space, not the system; this changes nothing in this discussion, other
than pointing out that the mappings between the Solution Space and Problem Space will often
simply be based on our experience, predictions, speculation, and such, not on actual measurement.

28 1. J. Jureta

Therefore, whether a Specification is the Optimal Specification depends on where
it maps in the Problem Space, since different Criteria values are not equally desir-
able. This was illustrated with indifference curves in Figure [earlier: we may be
indifferent between some value combinations, which we can represent with an in-
difference curve, while different indifference curves reflect that we can evaluate
some value combinations as strictly more desirable than others.

In the ideal and almost certainly infeasible case, we would have information
about preference between every combination of values of independent Criteria. This
would give us the indifference curves for these combinations, and also the corre-
sponding utility function. In more realistic cases, we may be able to find a partial
order preference relation, which compares some combinations, perhaps over a sub-
set of Criteria in the Problem Space.

In any case, however, the important observation to make is that in order to say
which regions of the Problem Space are more desirable than others, it is necessary
to have information about the relative desirability, that is, of preference of Criteria
value combinations.

As a brief digression, we recall here how the notions of preference, utility, and
indifference curves are related in general, in economics. The term preference is used
here to mean preference relation, the binary relation that indicates the relative de-
sirability between two things; in this paper, it is the binary relation that compares
the relative desirability of Criteria values, be they values of the same Criterion, or
of different Criteria, or of value combinations of Criteria. Utility is a quantitative
representation of information in a preference relation. If a preference relation, for
example, over different values of a single Criterion, is transitive, complete, and con-
tinuous, then we can define a corresponding utility function which is continuous.
An indifference curve is a set of different combinations of things compared in terms
of preference, which are all equally preferred. A utility function reflecting that pref-
erence relation will return the same utility value for all members of that set. The
same utility function gives many indifference curves, as there can be several sets of
equally preferred combinations, such that combinations from different such sets are
not equally preferred. As a final remark, utility is a generic notion, which can have
different interpretations, and the specific meaning it will have depends on what one
chooses to quantify desirability with.

7.2 Utility Representation with Criteria and Depend Relations

This preference information can be represented using the notions which were al-
ready introduced, namely, Criteria and the Depend relation. To add a utility func-
tion, add a Criterion whose values are read as utility values, and a Depend relation
that specifies which other Criteria values determine the utility value. This is the il-
lustrated in Figure by adding a utility Criterion U (Varl, Var2) which gives
the utility value for combinations of Var1l and Var2 Criteria.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 29

L U(Var1,Var2)

Var1

@

T

T
1
1
g
1
1

Fig. 11 The figure on the left shows a part of the Solution Space, borrowed from Figure S3, S4,
and S5 indicate mappings of three different Specifications to this part of the Problem Space. The
three are above the threshold values T1 and T2. Each is on a different indifference curve, indicating
that they are not equally preferred. The part on the right adds a Criterion U (Varl, Var2) which
gives the utility value of value combinations of Varl and Var2. Note that the figure on the right
is a simplification, as the two points S4 and S5 are points on a three-dimensional surface; the shape
of the indifference curve hints at the shape of that surface.

It is important to note that there can be different utility Criteria in the same Prob-
lem Space. This can be due to the fact that we may know preferences between value
combinations of some Criteria, but not of others; or it may reflect differences in
preferences between stakeholders, in which case we could have different utility Cri-
teria for different stakeholders. Another important remark is that any definition of
the dependence between the value of some Criteria and the value of other Criteria,
be they utility Criteria or otherwise, are defined by a function that consequently is
an instance of the Depend relation.

7.3 Decision Rules

Even in the trivial example introduced in Section [5.1] we can have many different
preference orders, and thereby different utility functions. For example, there can be
a preference order over values of Var1l, another over those of Var2; if there are
three stakeholders, A, B, and C, and they all have their own preferences over the
values of these Criteria, then we might have nine preference orders in total; worse,
we may not have a rule that tells us how to obtain preferences over combinations
of Varl and Var2, from those that we have, over only values of Var1l and only
values of Var2.

As soon as there are two preference relations, it is necessary to explain how they
are used together to compare Problem Instances to which Specifications map in the
Problem Space.

This explanation is called the Decision Rule, and can take various forms.

30 1. J. Jureta

In the example illustrated in Figure |11} we may want to do one of the following:

Maximize the value of U (Varl, Var2),
Maximize the value of Varl,

Maximize the value of Var2,

And so on.

Each item gives the condition that a Specification should satisfy, in order to be
the Optimal Specification. In the first item above, the Decision Rule means that the
Optimal Specification is the Specification which maximizes the value of U (Var1l,
Var?2). In the second item, notice that the utility function is not given, but is im-
plicit: namely, utility is independent from the value of Val2, and increases with the
increase in Val1l. The third item is the opposite case.

Definition 16. Decision Rule: A Decision Rule is the Criterion, such that in a given
set of Specifications, the Specificationwhich has the highest value on that Criterion,
is the Optimal Specification.

The Decision Rule is a special Criterion, as it will single out the Optimal
Specification among those Specifications that we are considering. Its value may,
and often will be the result of combining values of other Criteria, such as when
U (Varl, Var?2) is the Decision Rule.

8 Requirements Optimisation Problems

The Decision Rule definition, together with the notions we had introduced so far,
introduces a new class of RPs, all of which include the Decision Rule defined above.
They are called Requirements Optimisation Problems (ROPs).
Because they all include the Decision Rule, they are not a subclass of the DRP.
ROPs are important for the RPAS, as we will argue in Section [J] that the RPAS
amounts to a set of ROPs, together with some additional constraints on that set.
This section first defines the ROP, and then illustrates how the DRP, if we only
apply one change to it, becomes a subclass of the ROP.

8.1 Problem Statements

Solving an ROP involves doing design and doing decision-making.
Here, doing design means doing four tasks, and not necessarily in the sequence
given below:

1. Constructing the Problem Space, by finding and defining Criteria, and defining
Depend relations between these Criteria, when we know that there are corre-
lations between their values, or have other reasons to believe that their values
determine one another.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 31

2. Constructing the Solution Space, by identifying and defining Parameters, and the
Depend relations between the Parameters.

3. Defining Depend relations between Parameters and Criteria, so as to clarify how
the choices of values of the former relate to the satisfaction of the Criteria.

4. Choosing the Decision Rule, and defining the Depend relation which makes its
value depend on values of other Criteria in the Problem Space.

Doing decision-making here means identifying and committing to values of Pa-
rameters which, relative to any other combination of Parameter values, result in the
highest value of the Decision Rule.

This separation between design and decision-making is introduced to highlight
that there are two kinds of tasks in ROP problem-solving. The aim is not to suggest
that they are necessarily done in sequence, that we first have to do all related to
design, and then do the decision-making. The separation still fits incremental design,
which, in this perspective, amounts to a sequence of activities, some of which are
focused on design (such as, adding new Criteria and Parameters, choosing values
thereof, etc.) and some of which are concerned with decision-making (trying to find
values of Parameters) and can initiate the next design iteration (such as if we fail to
find the Parameter values, which may lead to changing Parameters, Criteria, Depend
relations, and so on).

The two problems are defined as follows.

Definition 17. Requirements Design Problem (RDP): Given the information about
the stakeholders’ expectations, and the information about the environment of the
system-to-be, define (i) the Problem Space, (ii) the Solution Space, (iii) the Depend
relations over Criteria in the Problem Space and the Parameters in the Solution
Space, and (iv) the Decision Rule.

Definition 18. Requirements Optimisation Problem (ROP): Given (i) a Problem
Space, (ii) a Solution Space, (iii) a set of Depend relations between Parameters
and/or Criteria, (iv) a Decision Rule, and (v) a set of Parameters in the Solution
Space whose values have not been set, called the Decision Set, find the values of
Parameters in the Decision Set, such that there is no other combination of values of
these same Parameters, which returns a higher value of the Decision Rule.

As Criteria and Parameters are variables, and Depend relations are functions over
these variables, the ROP can be rewritten as follows:

Maximise fo(x)
subjectto fi(x) =b;, fori=1,...,n

where:

e x is the Decision Set, that is, a set of Parameters in the Solution Space, whose
values should be set,

e fo(x) is the Depend relation that returns the value of the Decision Rule in the
Problem Space,

e Each fij(x) = b;, fori=1,...,nis a Depend relation instance.

32 1. J. Jureta

8.2 An Illustration: Converting the DRP into an ROP Subclass

The aim in this section is to illustrate how ROPs are related to the DRP. We do
this by rewriting the DRP as a ROP subclass. That subclass will be called Revised
Default Requirements Problem (RDRP).

Defining RDRP involves answering the following questions:

What are K, R, S of the DRP in the ROP?
What are the Depend relations in DRP?
What is the Decision Set in DRP?

What is the Decision Rule in DRP?

b

The DRP uses the syntactic consequence relation I, leading us to assume that it
is of classical, two-valued logic, so that members of K, S, and R can either take the
value O or 1. Note that these values have a different reading depending on them being
for members of K, S, or R: in R, “1” tends to read “satisfied”, “achieved”, etc.; in K,
“1” can read “maintained”, “satisfied”, etc.; and in S, “1” can read “implemented”,
“configured”, or otherwise, along these lines.

It follows that the RDRP has only integer binary variables.

In the terminology of Problem Spaces and Solution Spaces, variables that corre-
spond to members of K and R are Criteria in RDRP, and define the Problem Space;
variables that correspond to members of S are Parameters, and define the Solution
Space.

The Depend relations in RDRP correspond to the relations between the members
of K, S, and R. For example, if the value of a variable w; depends on the value of
other variables yy,...,u, then we define a Depend relation w; — f(y1,...,u;) = 0.

We will have such Depend relations, because if a requirement rA is, for example,
refined by two other requirements rAl and rA2, then rA is satisfied if and only if
both rA1 and rA2 are satisfied. In RDRP, this is captured by a Depend relation.

In the DRP, R is given and must be satisfied, which in the RDRP means that
the values of all variables from R are set to 1, and they therefore cannot be in the
Decision Set. K is also given, and since R and S should be consistent with it, we can
also set all K variables to 1.

Variables from S in the DRP remain as the members of the Decision Set of the
RDRP. If an S variable depends on the values of other S, K, or R variables, then we
will exclude it from the Decision Set. It follows that the cardinality of the Decision
Set does not need to equal cardinality of .

All members of K and R are equally preferred, as it is equally important to satisfy
every member of R, and to maintain every member of K. We concluded earlier that
there are no means to compare specifications in the DRP. There is no information
about preferences in the DRP.

But once we allow alternative refinement of same requirements, we have alterna-
tive Specifications to choose from, and we want the RDRP to reflect this. Suppose
that we allow any member of K, R, S to be refined. This means that refining R gives
us another set of requirements, which includes requirements that refine those in R.
Let that set be ref(R), and let ref(K) and ref(S) be for K and S, what ref(R) is for R.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 33

The resulting RDRP is to find a subset of ref(S), such that, if all Parameters in
that subset are set to 1, then all Criteria from K and R obtain the value 1. As there
are is no preference information in the DRP, it is unclear what the Decision Rule
should be.

The simplest choice we saw for the Decision Rule in the RDRP, is that it is equal
to the sum of the members of ref(S), meaning that we want to find the smallest subset
of ref(S) which manages to result in the assignment of the value 1 to all Criteria
corresponding to members of K and R. So we want to maximise the following:

- Y x

xeref(s)

In addition to the Depend relations for refinements, we need the following De-
pend relations to guarantee that the Solution must assign the value 1 to every Crite-
rion from K and R:

Y yi=IR|

Y;ER

Y u=IK|

z1€K

Note that, since every x; in ref(S) is a binary variable, the solution to RDRP will
be the smallest subset of ref(S), which satisfies all Depend relations. This modi-
fies the Decision Rule Property from the DRP; that property is neutral about the
specifics of S, as long as it satisfies the Consistency and Satisfaction properties.
This makes the RDRP a different problem than DRP, and this is not necessarily a
relevant problem: the number of Parameters set to 1 in ref(S) has, in itself, nothing
to do with the quality expected from the system-to-be.

9 The Requirements Problem for Adaptive Systems

This section introduces the definition of the RPAS in the following steps. In the
first step, in Section [0.1] we recall the key ideas in RE for ASs. In Section[9.2} we
relate these ideas to the terminology of Problem Spaces and Solution Spaces, the
RDP, and the ROP. This leads us in Section to the definition of the design and
decision-making problems that form the RPAS.

34 1. J. Jureta

9.1 Key Ideas in Requirements Engineering for Adaptive Systems

In order to adapt to changes, the Adaptive System has to be capable of detecting
changes; it can only respond and adapt to those changes that it can detect.

To detect changes, the Adaptive System has to gather data about events in its op-
erating environment and about the functioning of its own components. At all times,
and on the basis of these observations, the Adaptive System has to estimate the level
to which it satisfies the stakeholders’ requirements. If the levels of satisfaction are
inadequate, the Adaptive System has to make changes to what it does in order to
satisfy the requirements.

The AS changes its behaviour via feedback loops. A feedback loop defines the
variables whose values need to be monitored; the values would be collected by sen-
sors, or would be functions of variables whose values the sensors collect. When the
values fall out of the predefined and allowed range, this triggers functionality in the
AS, dedicated to make changes to the operation of the AS.

Capability to adapt requires a hierarchy of functionality in an AS. The lowest-
level functionality interacts with the environment; the next level is functionality that
enables feedback loops, which monitor signals from sensors that monitor the envi-
ronment and the functionality at the lowest level; the second level is functionality
that enables feedback loops that monitor and manipulate the feedback loops at the
first level; and so on.

The above leads to key observations about the run-time of Adaptive System. (i)
The level at which requirements are satisfied will vary, due to failure in the system
and change in its environment. (ii) It is necessary to monitor the level of satisfaction
of requirements, in order to know when the system needs to adapt. (iii) When the
system adapts, it may have different ways of adapting, and each of these ways may
have a different impact on requirements satisfaction levels. (iv) Whenever it needs to
adapt, the system should adapt in the way that optimizes the levels of requirements
satisfaction, relative to the newly observed failure of a component, or of a change in
the environment.

The observations about run-time have important implications for the design-time
of Adaptive Systems.

Due to observation (i), it may be too idealistic and impractical to think of re-
quirements as being either satisfied or not, since this may lead to too many failed
requirements, too often. It can be more practical, therefore, to define multivalued
scales of requirements satisfaction, where failure equates to only some of many val-
ues. This is done through the relaxation of requirements [43| |59 [1]], where the
idea is to replace binary levels of satisfaction with, for example, continuous scales
of satisfaction, or by letting the requirement be binary, but tracking the frequency
of them being satisfied or failing, then using that frequency as the measure of the
degree to which these requirements are satisfied.

Observation (ii) suggests that it is necessary, at design-time, to define the levels
of requirements satisfaction that trigger adaptation. If the requirement has a binary
satisfaction scale, being either satisfied or not, it may be relevant to define the mini-
mal probability of observing its satisfaction; for example, in an ambulance dispatch

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 35

system, asking for the probability of at least 0.95, that an ambulance arrives to an
incident location within 5 minutes of being dispatched to it. This would translate,
at run-time, into looking at the frequency of incidents where the ambulance arrived
5 minutes or more, and triggering adaptation if that frequency is 5% or more of all
incidents to which an ambulance was dispatched. If the requirement has a scale with
many levels of satisfaction, then a threshold value has to be defined on that scale,
such that, when the satisfaction is below threshold, the system needs to adapt. This
has led to research on awareness requirements [[55]], which are used to define these
thresholds for triggering adaptation.

At run-time, when awareness requirements are satisfied, feedback loops become
active, and the system adapts. Because of observations (iii) and (iv), it is necessary
to define at design-time the requirements that the system should satisfy when adapt-
ing. These are the so-called evolution requirements [54], and place constraints on
how the system adapts. In the terminology of research on the RE for Adaptive Sys-
tems, evolution requirements place constraints on the range of reconciliation tactics
[19} 118} 151]] that the system may choose to apply, when adapting. The ambulance
dispatch system could adapt to the failure in its component that records ambulance
location, by requiring that control assistants who dispatch ambulances, record these
locations manually, or by relying on the record of ambulance location by the part
of the system which is located in each ambulance. An evolution requirement may
indicate that control assistants should not manually record information, unless more
than one of the automatic data recording components fails; this would exclude the
second adaptation in the example.

9.2 Premises for the definition of the RPAS

The aim in this section is to relate the key ideas from existing research, to the termi-
nology of Problem Spaces, Solution Spaces, the RDP, and the ROP.

9.2.1 Monitoring

The ability of an AS to adapt to changes requires that the system can detect changes.
We introduce two terms, in order to talk about the extent of changes that the AS is
designed to detect.

Definition 19. A Monitored Variable is a variable whose values the Adaptive Sys-
tem collects and whose changes of values can trigger adaptation.

Definition 20. The Monitoring Scope of an AS is the set of all of its Monitored
Variables and, for each variable, the range of values that the Adaptive System can
detect.

The Monitoring Scope describes what the AS is able to detect as change in its
environment, and change in its own functionality. These changes are detected via

36 1. J. Jureta

sensors. The variety and the specifics of the sensors that an AS has, determine its
Monitoring Scope.

If something in the environment, or in the AS itself changes, but there are no
Monitored Variables to reflect that change, then the AS will ignore it.

The Monitoring Scope reflects the changes that were anticipated at design-time.
All other changes, which the Monitoring Scope cannot detect, remain as unantici-
pated changes. It is in this sense that we talk about scope in Monitoring Scope, as
the scope of changes that have been predicted and considered as particularly rel-
evant at design-time, regardless of how relevant they may actually prove to be at
run-time.

The design of the Monitoring Scope involves choosing the Monitored Variables,
based on the sensors that can be built into the AS, and the Depend relations between
Monitored Variables and the Parameters in the Solution Space, and the Criteria in
the Problem Space. Without these Depend relations, it is unclear why sensors would
be used at all, or why and when the AS should adapt.

Monitoring the level of requirements satisfaction here means having Monitored
Variables that are equal to some of the Criteria in the Problem Space. Monitoring the
satisfaction of domain knowledge also means that the Monitoring Scope will include
Monitored Variables that are equivalent to some Criteria, when these Criteria reflect
domain knowledge. We may also have Monitored Variables that monitor Parameter
values, as we want to know when failure happens, that is, when actual Parameter
values are not those defined in the Solution.

9.2.2 Change

The Monitoring Scope is unlikely, in general, to be such that it enables the AS to
detect all relevant changes in its functioning, its environment, and in the expectations
of its stakeholders. This is the case as we cannot, at design-time, anticipate all that
could potentially change, and to which the system should adapt.

Independently from the Monitoring Scope, there is what we call the Change
Scope, denoting the variety of phenomena in, or outside the AS, which may occur,
and to which the AS may need to adapt.

The Change Scope is not limited to phenomena that can cause the AS to fail to
satisfy its design-time requirements, and/or to phenomena that put it at odds with its
environment.

Stakeholders need to perceive the services that the AS delivers as being of high
quality. People’s evaluations of service quality reflect their own comparisons be-
tween expectations and experience with the service [48, |62} 149, 63, |39]. While
design-time requirements are fixed, we may well have an AS that does achieve
these requirements, but is perceived as being of low quality; stakeholders’ expec-
tations may have changed, enlarging the gap between what they expect, and their
experience of the AS. The following definition of the Change Scope reflects this.

Definition 21. The Change Scope is the set of variables that describe the phenom-
ena in the environment of the AS, and/or the system itself, are such that the values

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 37

of these variables can change independently from the system’s operation, and these
changes influence the stakeholders’ perception of the quality of the AS.

At design-time and run-time, then, there can be many variables in the Change
Scope that the system would ideally monitor. Their relevance may become apparent
only after some phenomena occur at run-time and affect the stakeholders’ perception
of quality of the AS. In such cases, the engineers need to determine how to measure
these phenomena, which sensors to use to collect measurements, and thereby add
new variables to the Monitoring Scope.

In the terminology of the Monitoring Scope and the Change Scope, the design
of feedback loops can be described as the task of identifying phenomena that can
influence stakeholders’ expectations, finding ways to measure them, adding these
variables to the Change Scope. Next, it is necessary to determine how these vari-
ables are related to Criteria and Parameters. All such variables are candidates for
becoming Monitored Variables.

It is unlikely that we can identify every variable in the Change Scope. Of those
that we do manage to identify, we may also be able to make only some into Mon-
itored Variables, due to, for example, there being no sensors that are capable to
capture their values.

The conclusion that is important for the definition of the RPAS, is that the design
part of the RPAS involves finding and choosing variables in the Change Scope, that
need to be made into Monitored Variables in the Monitoring Scope, as it is unlikely
that we can ensure that the Monitoring Scope fully covers the Change Scope.

9.2.3 Stability and Adaptation

We will use the term event to refer to any change of values of variables in the Change
Scope; an event can be the result of a failure of a component of the AS, a drop in
the level to which the AS satisfies a requirement, a change in the conditions in the
operating environment of the AS, and so on.

The reason for having Monitored Variables in the first place, is because their
changes of values result in changes of values of Criteria in the Problem Space and/or
Parameters in the Solution Space.

The run-time of the AS is, then, a sequence of two kinds of time periods, called
periods of stability and of adaptation.

Stability is any time period during the run-time of an AS, during which one of
the following conditions holds:

e Values of Change Scope are not changing;

e Values of Change Scope variables are changing, but these variables are not Mon-
itored Variables;

e Values of Change Scope variables are changing, and some or all of them are
Monitored Variables. The changes result in new values for Criteria and/or Param-
eters. However, these changes are within some ranges that we judged tolerable at
design-time.

38 1. J. Jureta

As the values of Monitored Variables influence values of Criteria, they also in-
fluence the Problem Instance that the AS needs to be solving. As the values of
Monitored Variables change, so does the Problem Instance to solve. At some time at
the run-time, the AS should run according to the Optimal Specification that solves
the Problem Instance applying at that time period.

Adaptation is the time period during the run-time of an AS, when the AS is
running according to the Specification which is not the Optimal Specification for
the Problem Instance that the AS should solve at that time.

To clarify this, suppose that 77 denotes a time period, during which the Moni-
tored Variables result in Criteria values which give one Problem Instance A, and the
Optimal Specification X solves A. During 77, the AS runs according to X.

Let 75 be a time period which immediately follows 77. 7> starts with values of
Monitored Variables that give the Problem Instance B. If B # A, and X does not solve
B, it is necessary to find a new Specification Y which is the Optimal Specification
for B.

Adaptation is the period during which the AS is searching for this new Spec-
ification, and changes behavior from running according to X, to run according to
Y.

9.2.4 Relaxation

If the AS were to react to every change in Criteria and Parameter values, stability
periods would be shorter, and more resources would be invested in adaptation.

Relaxation is used to allow the AS to run according to the same Specification in
a broader range of conditions, and thereby potentially lengthen stability periods. We
have three possible cases, depending on what changes for the AS, and relaxation
can work in each case:

e If only Criteria values change, then the goal is no longer to solve the Problem
Instance, denote it A, that was relevant in the last stability period, but a new
Problem Instance, denote it B. If the Specification X was the Solution to A, and it
is not the Optimal Specification for B, then adaptation would involve finding the
Specification Y, which is the Optimal Specification, and thereby the Solution to
B. Adaptation can be avoided, if we allow X to be the Solution to both A and B.

e If only Parameter values change, then the Problem Instance A to solve has not
changed, but the AS is no longer running according to some Specification X
from the last stability period, but according to a new Specification Y. There is
no guarantee that Y is the Optimal Specification for A, but it can be the Optimal
Specification for some other Problem Instance B. Adaptation would amount to
finding a third Specification, which solves a Problem Instance C, whereby C is
closer to A than B. To avoid adaptation in this case, relaxation would consist of
allowing any one Specification from some set of Specifications to be the Solution
to A.

e If both Criteria and Parameter values are changing, then adaptation will involve
finding the Optimal Specification to the new Problem Instance. To avoid adap-

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 39

tation, relaxation would need to be such that, the new Problem Instance is con-
sidered sufficiently close to the one from the last stability period, and the new
Specification as the Solution to the new Problem Instance.

In the cases above, and using the terminology of ROPs, adaptation amounts to
the act of recomputing the Solution to a ROP, when the Problem Instance changes.
Relaxation, in contrast, is the act of not triggering the computation of a new Solu-
tion to a new Problem Instance. At design-time, relaxation consists of changing the
Criteria in the Problem Space, and changing Depend relations that link Parameter
values to Criteria values. For example, suppose that we have formulated a ROP, and
we want to relax it so as to allow more Specifications to be its Solution.

9.3 Problem Statements

RPAS is a double problem, one focused on design, the other on decision-making.
They are defined as follows.

Definition 22. Requirements Design Problem for Adaptive Systems (RDPAS):
Given the information about the stakeholders’ expectations, the information about
the environment of the system-to-be, and the predictions of changes to stakeholders’
expectations and the environment, define (i) the sequence of ROPs that the AS is
expected to solve, and (ii) the Monitoring Scope needed to detect some or all of the
predicted changes.

Definition 23. Requirements Optimisation Problem for Adaptive Systems (ROPAS):
Given a sequence of ROPs that the AS is expected to solve and the Monitoring
Scope for the AS, find the set of Specifications and Evolution Requirements, such
that, if the AS can run according to the Specifications, and while adapting satisfy

the Evolution Requirements, then it will maximise the time that it runs according to

the Optimal Specification in each stability period.

10 ROP and Mathematical Optimisation

Subclasses of the general ROP are made by restricting the properties of Criteria,
Parameters, Depend relations, and the Decision Rule.

Restrictions can be intended to narrow down the informal reading of the Criteria,
Parameters, and Depend relations, and thereby the informal interpretation of an ROP
as of a problem statement meaningful from the perspective of the ZJ view of RE.

For example, the ZJ view distinguishes between requirements, domain knowl-
edge, and specification. To capture this and define an ROP inspired by the ZJ view,
the following would need to be done. All Criteria and Parameters need to be binary
variables. The Criterion class should have two subclasses, requirement and domain
knowledge. Specification should be the only subclass of the Parameter class.

40 1. J. Jureta

Another kind of restrictions, independent from what one thinks RE is about, are
on types of Criterion and Parameter variables, and the mathematical properties of
Depend relations. They are interesting, because the general ROP is a subclass of the
general mathematical optimisation problem, defined as follows.

Definition 24. Optimisation Problem [8]]: A mathematical optimisation problem,
or just an Optimisation Problem, has the following form:

Minimise fy(x)
subjectto fi(x) <b;, fori=1,...,n

where the vector x = (xy,...,x,) is called the optimisation variable of the prob-
lem, the function fy(x) is called the objective function, the functions fj(x) <
bi,...,fm(x) < by, are the constraint functions, and the constants by,...,b,, are
the limits, or bounds, for the constraints.

Definition 25. Optimal Solution : The Optimal Solution to an Optimisation Prob-
lem is the vector x* if it has the smallest objective value among all vectors that
satisfy the constraints: that is, for any x’ with f(x') < by, ..., fin(x') < by, we have

Jo(x') > fo(x*).

ROP differs from the above in (i) having a different terminology, and (ii) equal-
ity in constraints. These differences still make the ROP a subclass of the General
Optimisation Problem above. We can therefore reuse resolution techniques from
mathematical optimisation [9, 8| 140,47, 160, 31]. For example:

1. Depending on Criteria and Parameter variable types, we can have the following
ROP subclasses:

a. Binary ROP, where all Criteria and Parameter variables have binary value,

b. Integer ROP, where all variables take an integer value. We can have this if
we allow more than two levels of satisfaction of Criteria, and more than two
configuration values for Parameters,

c. Continuous ROP, if all Criteria and Parameters take real numbers as values,

d. Mixed-integer ROP, if there are binary, integer, and continuous variables in
the Decision Set.

2. Depend relation properties give another classification dimension, where we can
distinguish:

a. Linear Depend relations, where every relation is a linear function,

b. Nonlinear Depend relations, where every relation is an arbitrary nonlinear
function,

c. General Depend relations, where some relations are linear, others nonlinear.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 41

11 ROP and Decision Analysis

“Decision analysis is a logical procedure for the balancing of the factors that influ-
ence a decision. The procedure incorporates uncertainties, values and preferences in
a basic structure that models the decision.” [29]

The decision analysis procedure involves four steps [37,38]). In step one, the aims
are to specify the objectives to achieve by taking the decision, generate alternatives
to choose from in order to achieve the objectives, and identify attributes used to
measure the degree to which the objectives are achieved. Step two measures the
uncertainty of the consequences of alternatives; the aim is to quantify uncertainty
with a probability distribution of attribute values, with one probability distribution
per alternative. Step three captures the relative desirability of value assignments
to attributes. This gives a utility function, as a function over attributes. Step four
ranks alternatives by their expected utility, by following the rule that the higher its
expected utility, the more desirable the alternative.

The problem in decision analysis can be formulated as an Optimisation Problem,
as follows.

Definition 26. Decision Analysis Optimisation Problem (DAOP) has the follow-
ing form:

i=n
Maximise) (p(xj;)*U(x;j;))
i=1
i=n
subject to Zp(xj,,') =1,fori=1,....m
i=1

where j denotes an alternative among m alternatives, i an attribute among »n at-
tributes, x;; the value of the attribute i when alternative j is chosen, p(x;;) the
probability of observing x; ; for i when choosing alternative j, and U (x;;) the utility
of observing x; ; for i when choosing alternative j.

Definition 27. Optimal Solution to DAOP is an alternative j* such that for any
other alternative /', it is true that Y, =1 (p(x ;1 ;) * U (xjr;)) < L=t (p(aje i) ¥ U (x5).

The relationship between ROP and DAOP is that there are subclasses of ROP
which are also subclasses of DAOP.

There are many such subclasses, and they depend on how ROP concepts are
mapped to DAOP concepts. Here are the steps to follow, to make one such ROP
subclass:

1. Let every alternative j = 1,...,m in the DAOP be a point in the Solution Space.

2. Let each attribute i = 1,...,n that is used to evaluate alternatives, be a Criterion
in the Solution Space.

3. Add one Criterion to the Solution Space, and call it utility. Its values are util-
ity values, interpreted informally in the same way utility values are in decision
analysis. Note that the Solution Space now has n + 1 dimensions.

42 1. J. Jureta

4. Add Depend relations, which map values of all non-utility Criteria, or combi-
nations of these Criteria, to values of the utility Criterion. This is the same as
saying, using terms common to RE, that different levels of satisfaction of re-
quirements and domain assumptions that these non-utility Criteria amount to,
result in different levels of utility. It is necessary to add these Depend relations,
because in decision analysis, utility is the aggregate measure of the attributes
used to evaluate alternatives, and these relations will reflect this. If such Rela-
tions were absent, it will look like the Decision Rule disregards all Criteria other
than utility, or disregards all those Criteria whose values map to no utility value.

5. Constraints Y=} p(x;;) = 1 for j = 1,...,m from DAOP should be carried over
as Depend relations to the ROP.

6. The Decision Rule of the ROP should be equal to the Depend relation that corre-
sponds to the objective function in the DAOP.

The resulting ROP subclass is a subclass of DAOP, in the sense that the only
differences between DAOP and the ROP subclass are those of terminology and in
the number of Depend relations, since it is necessary to add Depend relations that
map non-utility Criteria values to the utility Criterion values.

12 ROP and Expected Utility Theory

“Expected utility models are concerned with choices among risky prospects whose
outcomes may be either single or multidimensional. If we denote these various (say
n) outcome vectors by x; and denote the n associated probabilities by p; such that
the sum over i = 1 to i = n of p; equals 1, we then generally define an Expected
Utility (EU) model as one which predicts or prescribes that people maximize the
sumover i = 1 to i =nof F(p;)*«U(x;). [...] Within this general EU model different
variants exist depending on (1) how utility is measured, (2) what kind of probabil-
ity transformations F(.) are allowed, and (3) how the outcomes x; are measured.”
[Schoemaker:1982]

The DAOP introduced in the previous section is equivalent to the optimisation
problem central to EU, so that the same remark as for DAOP applies: there is a
subclass of SSOP which is also a subclass of the EU problem, and we can proceed
to define that subclass in the way as for DAOP.

13 Conclusions

This paper argued that the Requirements Problem for Adaptive System is different
from the DRP, and that it is not a subclass of the DRP. It then proposed a general
definition of the RPAS. Finally, the paper related RPAS to mathematical optimisa-
tion in general, to decision analysis in management science, and to expected utility
theory in economics.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 43

Acknowledgements. The first author is funded by the Fonds de la Recherche

Scientifique — FNRS (Brussels, Belgium). This work was supported in part by ERC
advanced grant 267856, titled “Lucretius: Foundations for Software Evolution”.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy goals for requirements-driven

adaptation. In Requirements Engineering Conference (RE), 2010 18th IEEE International,
pages 125-134. IEEE, 2010.

. Patrik Berander and Anneliese Andrews. Requirements prioritization. In Engineering and

managing software requirements, pages 69-94. Springer, 2005.

. Barry Boehm, Prasanta Bose, Ellis Horowitz, and Ming June Lee. Software requirements ne-

gotiation and renegotiation aids: A theory-w based spiral approach. In Software Engineering,
1995. ICSE 1995. 17th International Conference on, pages 243-243. IEEE, 1995.

. Barry W Boehm. Software engineering economics. Software Engineering, IEEE Transactions

on, (1):4-21, 1984,

. Barry W. Boehm. A spiral model of software development and enhancement. Computer,

21(5):61-72, 1988.

. Barry W Boehm, John R Brown, and Myron Lipow. Quantitative evaluation of software

quality. In Proceedings of the 2nd international conference on Software engineering, pages
592-605. IEEE Computer Society Press, 1976.

. Barry W Boehm, Ray Madachy, Bert Steece, et al. Software Cost Estimation with Cocomo I1.

Prentice Hall PTR, 2000.

. Stephen Poythress Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-

sity press, 2004.

. Stephen Bradley, Arnoldo Hax, and Thomas Magnanti. Applied mathematical programming.

Addison Wesley, 1977.

Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,
Marin Litoiu, Hausi Miiller, Mauro Pezze, and Mary Shaw. Engineering self-adaptive systems
through feedback loops. In Software Engineering for Self-Adaptive Systems, pages 48-70.
Springer, 2009.

Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven informa-
tion systems engineering: the tropos project. Information systems, 27(6):365-389, 2002.
Betty HC Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper An-
dersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, et al. Software engineering
for self-adaptive systems: A research roadmap. Springer, 2009.

Jane Cleland-Huang, Raffaella Settimi, Chuan Duan, and Xuchang Zou. Utilizing supporting
evidence to improve dynamic requirements traceability. In Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on, pages 135-144. IEEE, 2005.

Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-directed requirements
acquisition. Science of computer programming, 20(1):3-50, 1993.

Robert Darimont and Axel Van Lamsweerde. Formal refinement patterns for goal-driven
requirements elaboration. ACM SIGSOFT Software Engineering Notes, 21(6):179-190, 1996.
Alan Davis, Oscar Dieste, Ann Hickey, Natalia Juristo, and Ana Maria Moreno. Effectiveness
of requirements elicitation techniques: Empirical results derived from a systematic review. In
Requirements Engineering, 14th IEEE International Conference, pages 179—188. IEEE, 2006.
Neil A Ernst, Alexander Borgida, Ivan J Jureta, and John Mylopoulos. Agile requirements
engineering via paraconsistent reasoning. Information Systems, 2013.

M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard. Reconciling system require-
ments and runtime behavior. In IWSSD, page 50, Washington, DC, USA, 1998. IEEE Com-
puter Society.

44

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

3s.

36.

37.
38.

39.

1. J. Jureta

. S. Fickas and M. S. Feather. Requirements monitoring in dynamic environments. In /EEE Int.
Req. Eng. Conf., pages 140-147, 1995.

Anthony CW Finkelstein, Dov Gabbay, Anthony Hunter, Jeff Kramer, and Bashar Nuseibeh.
Inconsistency handling in multiperspective specifications. Software Engineering, IEEE Trans-
actions on, 20(8):569-578, 1994.

Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Pistore, Marco Roveri, and Paolo Traverso.
Specifying and analyzing early requirements in tropos. Requirements Engineering, 9(2):132—
150, 2004.

Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Sebastiani. Reasoning
with goal models. In Conceptual ModelingER 2002, pages 167-181. Springer, 2003.

Joseph A Goguen and Charlotte Linde. Techniques for requirements elicitation. In Require-
ments Engineering, 1993., Proceedings of IEEE International Symposium on, pages 152—164.
IEEE, 1993.

Orlena CZ Gotel and CW Finkelstein. An analysis of the requirements traceability problem.
In Requirements Engineering, 1994., Proceedings of the First International Conference on,
pages 94-101. IEEE, 1994.

Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal requirements modeling lan-
guages: Rml revisited. In Proceedings of the 16th international conference on Software engi-
neering, pages 135-147. IEEE Computer Society Press, 1994.

Constance L Heitmeyer, Ralph D Jeffords, and Bruce G Labaw. Automated consistency check-
ing of requirements specifications. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 5(3):231-261, 1996.

Andrea Herrmann and Maya Daneva. Requirements prioritization based on benefit and cost
prediction: An agenda for future research. In International Requirements Engineering, 2008.
RE’08. 16th IEEE, pages 125—-134. IEEE, 2008.

Ann M Hickey and Alan M Davis. A unified model of requirements elicitation. Journal of
Management Information Systems, 20(4):65-84, 2004.

Ronald A Howard. Decision analysis: Applied decision theory. Stanford Research Institute,
1966.

Anthony Hunter and Bashar Nuseibeh. Managing inconsistent specifications: reasoning, anal-
ysis, and action. ACM Transactions on Software Engineering and Methodology (TOSEM),
7(4):335-367, 1998.

Michael Jiinger, Thomas Liebling, Denis Naddef, George Nemhauser, William Pulleyblank,
Gerhard Reinelt, Giovanni Rinaldi, and Laurence Wolsey. 50 Years of Integer Programming
1958-2008. Springer, Berlin, 2010.

Ivan Jureta, John Mylopoulos, and Stéphane Faulkner. Analysis of multi-party agreement in
requirements validation. In Requirements Engineering Conference, 2009. RE’09. 17th IEEE
International, pages 57-66. IEEE, 2009.

Ivan J Jureta, Alexander Borgida, Neil A Ernst, and John Mylopoulos. Techne: Towards
a new generation of requirements modeling languages with goals, preferences, and inconsis-
tency handling. In Requirements Engineering Conference (RE), 2010 18th IEEE International,
pages 115-124. IEEE, 2010.

Ivan J Jureta and Stéphane Faulkner. Clarifying goal models. In Tutorials, posters, panels and
industrial contributions at the 26th international conference on Conceptual modeling-Volume
83, pages 139-144. Australian Computer Society, Inc., 2007.

Ivan J Jureta, John Mylopoulos, and Stephane Faulkner. Revisiting the core ontology and prob-
lem in requirements engineering. In International Requirements Engineering, 2008. RE’08.
16th IEEE, pages 71-80. IEEE, 2008.

Joachim Karlsson, Claes Wohlin, and Bjorn Regnell. An evaluation of methods for prioritizing
software requirements. Information and Software Technology, 39(14):939-947, 1998.

Ralph L Keeney. Decision analysis: an overview. Operations Research, 30(5):803-838, 1982.
Ralph L Keeney. Decisions with multiple objectives: preferences and value trade-offs. Cam-
bridge University Press, 1993.

William J Kettinger and Choong C Lee. Zones of tolerance: alternative scales for measuring
information systems service quality. MIS Quarterly, 29(4):607-623, 2005.

Requirements Problem and Solution Concepts for Adaptive Systems Engineering 45

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Mark W Krentel. The complexity of optimization problems. Journal of computer and system
sciences, 36(3):490-509, 1988.

John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Towards a deeper understanding of
quality in requirements engineering. In Advanced Information Systems Engineering, pages
82-95. Springer, 1995.

Julio Cesar Sampaio do Prado Leite and Peter A Freeman. Requirements validation through
viewpoint resolution. Software Engineering, IEEE Transactions on, 17(12):1253-1269, 1991.
Emmanuel Letier and Axel Van Lamsweerde. Reasoning about partial goal satisfaction for
requirements and design engineering. In ACM SIGSOFT Software Engineering Notes, vol-
ume 29, pages 53-62. ACM, 2004.

Sotirios Liaskos, Sheila A Mcllraith, Shirin Sohrabi, and John Mylopoulos. Integrating pref-
erences into goal models for requirements engineering. In Requirements Engineering Confer-
ence (RE), 2010 18th IEEE International, pages 135-144. IEEE, 2010.

John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using nonfunctional
requirements: A process-oriented approach. Software Engineering, IEEE Transactions on,
18(6):483-497, 1992.

Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework for expressing the
relationships between multiple views in requirements specification. Software Engineering,
1IEEE Transactions on, 20(10):760-773, 1994.

Christos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of computer and system sciences, 43(3):425-440, 1991.
Anantharanthan Parasuraman, Valarie A Zeithaml, and Leonard L Berry. A conceptual model
of service quality and its implications for future research. The Journal of Marketing, pages
41-50, 1985.

Leyland F Pitt, Richard T Watson, and C Bruce Kavan. Service quality: a measure of infor-
mation systems effectiveness. MIS quarterly, pages 173—187, 1995.

Balasubramaniam Ramesh and Matthias Jarke. Toward reference models for requirements
traceability. Software Engineering, IEEE Transactions on, 27(1):58-93, 2001.

W. N. Robinson. A requirements monitoring framework for enterprise systems. Requir. Eng.,
11(1):17-41, 2006.

William N Robinson, Suzanne D Pawlowski, and Vecheslav Volkov. Requirements interaction
management. ACM Computing Surveys (CSUR), 35(2):132-190, 2003.

Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements with misuse cases.
Requirements Engineering, 10(1):34—44, 2005.

V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos. Requirements-driven
software evolution. Computer Science - Research and Development, pages 1-19, 2012.

V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos. Awareness Require-
ments. In Rogério Lemos, Holger Giese, Hausi A. Miiller, and Mary Shaw, editors, Software
Engineering for Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer Science,
pages 133-161. Springer, 2013.

Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In Require-
ments Engineering, 2001. Proceedings. Fifth IEEE International Symposium on, pages 249—
262. IEEE, 2001.

Axel Van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing conflicts in goal-
driven requirements engineering. Software Engineering, IEEE Transactions on, 24(11):908—
926, 1998.

Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented require-
ments engineering. Software Engineering, IEEE Transactions on, 26(10):978-1005, 2000.
Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty HC Cheng, and J-M Bruel. Relax: Incorpo-
rating uncertainty into the specification of self-adaptive systems. In Requirements Engineering
Conference, 2009. RE’09. 17th IEEE International, pages 79-88. IEEE, 2009.

Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.
Journal of Computer and System Sciences, 43(3):441-466, 1991.

Pamela Zave and Michael Jackson. Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology (TOSEM), 6(1):1-30, 1997.

46

62.

63.

1. J. Jureta

Valarie A Zeithaml, Leonard L Berry, and Ananthanarayanan Parasuraman. Delivering Qual-
ity Service: Balancing Customer Perceptions and Expectations. Free Press, New York, 1990.
Valarie A Zeithaml, Leonard L Berry, and Ananthanarayanan Parasuraman. The behavioral
consequences of service quality. The Journal of Marketing, pages 31-46, 1996.

	Requirements Problem and Solution Concepts for Adaptive Systems Engineering, and their Relationship to Mathematical Optimisation, Decision Analysis, and Expected Utility Theory
	Ivan J. Jureta
	1 Introduction
	1.1 Domain: Requirements Engineering
	1.2 Context: Default Requirements Problem
	1.3 Issue: What if the System is an Adaptive System?
	1.4 Contributions: Requirements Problem for Adaptive Systems and its Relationship to the Default Requirements Problem

	2 The Default Requirements Problem is a Minimal RP
	3 The Default Requirements Problem is not the Unique RP
	3.1 Uniqueness Matters because of Inheritance
	3.2 What Can an RP Inherit from the DRP?
	3.3 A Case of Complicated Inheritance
	3.4 Optimality in the Default Requirements Problem
	3.5 How are Optimality and Uniqueness related?

	4 Non-functional Requirements as Comparison Criteria
	5 Optimality and Comparison are Central to Adaptive Systems
	5.1 Adaptation as Switching
	5.2 Switching and Optimality

	6 Requirements Problem and Solution Spaces
	6.1 Problem Space
	6.2 Problem Instances
	6.3 Solution Space
	6.4 Double Decision-Making
	6.5 Relating the Problem Space and the Solution Space

	7 Optimal Specifications in Problem Spaces
	7.1 Preference and Utility in Problem Spaces
	7.2 Utility Representation with Criteria and Depend Relations
	7.3 Decision Rules

	8 Requirements Optimisation Problems
	8.1 Problem Statements
	8.2 An Illustration: Converting the DRP into an ROP Subclass

	9 The Requirements Problem for Adaptive Systems
	9.1 Key Ideas in Requirements Engineering for Adaptive Systems
	9.2 Premises for the definition of the RPAS
	9.3 Problem Statements

	10 ROP and Mathematical Optimisation
	11 ROP and Decision Analysis
	12 ROP and Expected Utility Theory
	13 Conclusions
	References

