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Abstract

Regulatory compliance is increasingly being addressed in the practice of requirements engineering as
a main stream concern. This paper points out a gap in the theoretical foundations of regulatory com-
pliance, and presents a theory that states (i) what it means for requirements to be compliant, (ii) the
compliance problem, i.e., the problem that the engineer should resolve in order to verify whether require-
ments are compliant, and (iii) testable hypotheses (predictions) about how compliance of requirements is
verified. The theory is instantiated by presenting a requirements engineering framework that implements
its principles, and is exemplified on a real-world case study.
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1 Introduction

A legal norm (aka law, regulation) is a body of knowledge that acts both as a source of requirements and as
a filter for requirements. Just as any requirement can be considered desirable or undesirable, it is also either
compliant or not with relevant law, whereby compliance of a requirement refers informally to its alignment
to law. Determining whether some set of requirements is compliant with relevant laws is therefore becoming
a central issue in Requirements Engineering (RE). This was to be expected, for non-compliant requirements
result in — quite literally — an illegal information system, thereby risking sanctions for their owners and users,
among others. An RE project certainly cannot purport to be successfully executed if it fails to establish
regulatory compliance.

Verifying and ensuring regulatory compliance is a difficult problem fought continually in and out of
courtrooms with large budgets, over long periods of time. It should not be expected of the legislators
who author laws to reduce either these budgets or time spans. Rather, the challenge is on the designers
of information systems, and thus on requirements engineers who must at the very outset of the information
systems engineering effort verify through a systematic process that requirements indeed comply with relevant
laws. To do so, they need methods, and methods in turn require that we are clear on what regulatory
compliance means in the first place.

This paper offers a theory of regulatory compliance and discusses its application via a real-world compli-
ance problem. The theory starts from simple observations, prima facie evidence on how compliance is being
engineered into systems, providing as a result the so-called compliance relation f~c between a requirements
specification and set of norms. The compliance relation comes together with: (i) formal pragmatic conditions
that requirements should satisfy in order to be considered compliant; (ii) a formal definition of the compliance
problem, i.e., the problem that the engineer should resolve in order to verify that requirements are compliant;
(iii) testable hypotheses about how regulatory compliance of requirements is verified.

The proposed framework is founded on argument-theoretic, as opposed to truth-theoretic, semantics.
This means that compliance is not reduced to establishing that if requirements along with assumptions are
“true” so is the norm with respect to which we are establishing compliance. Rather, compliance means that
an argument that a given set of requirements complies with a given norm, is “acceptable” to stakeholders.
The argumentation concepts used are adopted from [IT], though in somewhat simplified form.

The rest of the paper is structured as follows. We start with an informal discussion of what it means
for requirements to be compliant with some relevant law (§2). The three parts of the compliance theory
for requirements are then presented and discussed in detail (§3). A requirements engineering framework is
presented, which provides an implementation of the theory (§4-5). The theory is applied via an example of
a real-world compliance problem (§6). The paper closes with the discussion of related work (§7), a summary
of conclusions, and pointers for future research (§8).

2 Understanding Regulatory Compliance

The aim in this section is to introduce informally what it means for requirements to be compliant with some
relevant law. Many details remain opaque here for the sake of simplicity; we formalize them later on.

It is intuitively clear that regulatory compliance of an information system concerns the relationship be-
tween the behavior of that running system and some relevant legal norms: the norms specify some constraints
that must be satisfied and others that must not be violated, so that we can only say that the system complies
if and only if no behavior of the system fails with regards to any of these two sets of constraints. Since be-
haviors should follow a specification thereof, compliance of requirements concerns the relationships between
the specified behaviors of the system-to-be and a set of relevant legal norms.

Stated in the current common terminology of RE, compliance concerns the relationships between the
specification of the system-to-be and the set of relevant legal norms. In turn, the specification defines tasks
that must be fullfilled, relates these tasks to agents who have been delegated these tasks, all in order to satisfy a
set of goals. Stated otherwise, we cannot discuss the compliance of the system-to-be without being concerned
with the (i) tasks, (ii) delegations of tasks to agents, and (iii) the relationships between the pre/post conditions
of the tasks and the legal norms.

Suppose that a doctor in a hospital subject to the UsA Health Insurance Portability and Accountability
Act applies has the goal to share patient information with colleagues. HIPAA states the following:



SAFEGUARDS.—Each person described in section 1172(a) who maintains or transmits health information shall main-
tain reasonable and appropriate administrative, technical, and physical safeguards — (A) to ensure the integrity
and confidentiality of the information; [...]” (42 USC 1320d-2, Sect.1173)

Given that there are potentially many different ways for a doctor in a hospital to share patient information
with colleagues, we cannot verify regulatory compliance of a goal in relation the the safeguards mandated
by HIPAA. We must instead look into all solutions of a goal, and in turn all solutions for all goals of the
information system: compliance is verified between a specification and the legal norms.

What is a solution of a goal? One solution for the hospital doctor’s goal is to hand over the patient’s file
to a nurse, and tell her to carry it to another doctor. Another solution may be for the doctor to go herself to
another doctor. If patient files are stored on a hospital network, the doctor may simply share these files with
her colleagues by changing the access rights for the patient file. The point is that there may be potentially
many solutions to a goal, and all of these solutions need to be checked for compliance with legal norms. Any
solution involves some agents, which have been delegated tasks so that if they execute tasks the goal will be
satisfied.

To describe a solution is to record the tasks (i.e., what is done) and delegations (i.e., who does it) involved
in the solution. Let R be a model of requirements for a system-to-be, and let Spec(R) be the specification for
that system-to-be, i.e., the set of solutions for all goals in R. The next ingredient needed for the verification
of compliance are the legal norms that are deemed relevant to the system in question.

It is important to distinguish between legal texts and a model of legal norms, for it is the latter that is
used in the verification of compliance. Why is this so? While law does apply to specific domains, such as
healthcare or financial industry, legal texts that codify law are rarely specific enough or written in a precise
enough manner for them to leave no ambiguities, no vagueness, and in general, no openness in interpretation.
Hence the need, as is commonly said, to “interpret law”. A model of norms arises precisely out of an
interpretation of a set of legal norms.

Suppose that we interpret some laws relevant to the system-to-be, and that this gives us a model of norms,
L. Given Spec(R) and L, we are still missing a third and final element, which we call compliance assumptions,
C'. The purpose of C is to indicate how fragments of the specification relate to those of the model of norms.
Returning to the exmaple, C' may indicate that if the doctor gives the patient file to a nurse and tells her to
carry it to another doctor, then this guarantees that the integrity and confidentiality of patient’s information
is ensured. In other words, C' may say that some specific solution, if applied, will satisfy or not violate some
(set of) legal norms.

Given Spec(R), L, and C, we can sketch the condition that must be satisfied in order to say that Spec(R)
complies with L. Since we are interested in checking if Spec(R) and C satisfy L, then it seems appropriate
to say that Spec(R) complies with L given C' if and only if the L is the consequence of Spec(R) and C:
i.e., Spec(R),C |~c L. We assume that Spec(R), C, and L are sets of well-formed formulas (wffs) in some
formalism. The relation |~¢ is a logical consequence relation which we call the compliance relation and we
formalize in the next section. Its salient traits are that it is nonmonotonic and that its proof theory is based
on the concept of argument and the justification process.

Why are these two properties important — why not Spec(R),C F L, where | is a standard monotonic
consequence relation? That F is monotonic means (by the definition of the monotonicity property of ) that
if Spec(R),C + L then also Spec(R'),C F L, where Spec(R) C Spec(R'). Informally, if Spec(R),C' F L then
whatever we add to Spec(R) to obtain Spec(R’), the initial specification Spec(R) will still be compliant with L.
When a specification or laws change, it is necessary to verify compliance again. It is clear that we would very
much prefer to work in settings in which |~¢ were a monotonic consequence relation, for it would reduce the
work necessary to verify compliance when new requirements are added and new laws are adopted, but this is
simply not the case. Why arguments? We said above that L is not a legal text, but a model of norms which is
produced by the interpretation of a legal text. It follows that we can never really confidently say to be certain
that a Spec(R) is perfectly compliant with some law. We can instead defend the claim “Spec(R) complies with
L” against any counterarguments that may be offered. When new counterarguments become available, we
are to consider whether we can defend R against these new counterarguments, and if not, proceed to modify
requirements so as to reestablish compliance. Verification of compliance thus requires a dialectical method,
in which arguments that support the claim that there is compliance are defended against arguments that
attack them. Stated otherwise, verification of compliance amounts to the justification of the claim “Spec(R)
complies with L” given some arguments that support and others that oppose that claim. Returning to the



example, perhaps there is a stakeholder who may disagree that having a nurse carry a patient file to another
doctor ensures the integrity and confidentiality of patient information: this stakeholder may suggest that
if nurses are not aware of HIPAA regulations, they may take less care and so integrity or confiendtiality
could be violated. The engineer will reestablish compliance of this solution by offering evidence against the
stakeholder’s argument: e.g., the engineer could indicate that nurses will receive training on HIPAA. The
counterarguments that the engineer offers may lead to changes to any of Spec(R), C, or L.

3 Theory of Regulatory Compliance

The intuitions outlined in the previous section are formalized here. We first give definitions for R, Spec(R),
C, and L ( We then formalize compliance frameworks used to verify compliance, by giving their
formal semantics and proof theory, thereby defining |~¢ ( We use compliance srtructures to define the
compliance problem (§3.3) and testable hypotheses about how regulatory compliance is verified in relation

to requirements (§3.4)).

3.1 R, Spec(R), C and L

Requirements Model R. Requirements that are elicited, discussed, refined, or otherwise manipulated over
the course of RE are recorded in a requirements model R. R amounts to a set of well-formed sentences of a
modeling language R. Most current modeling languages in RE allow us to state propositions and combine them
into sentences well-formed according to the grammar of the language. What is characteristic of RE languages
is that the propositions will be sorted: e.g., the proposition Patient data is available before diagnosis may
be an instance of the goal concept, or a postcondition of an instance of the task concept. Since R describes
a socio-technical setting, the instances of the various concepts will be associated to agents; e.g., the task of
making patient data available before diagnosis may be a goal assigned to a doctor, who may then delegate
it to another agent, and so on. R will consequently have at least the sets Pr, Ar, Sr of symbols referring
to, respectively, propositions, agents, and sorts, along with a function P : PR — Sg X Ag to relate every
proposition to a sort and an agent. The modeling language will define a grammar over (Sg, Pr, Ar) and
at least a consequence relation so that we can compute logical consequences of well-formed sentences in the
language. It may well have also a semantic entailment relation, but its presence or absence does not change
our discussion below.

Specification Spec(R). R contain goal-propositions, i.e., (g,p,a) where g € Sg, p € Pr and a € Ag, with
Pr(p) = (g9,a). Refinements and delegations of this or any other goal can be fairly elaborate: e.g., suppose
that the goal in question is and-refined onto three goals, and that each of the subgoals can be delegated to
either of three agents, so that if we assume one agent can satisfy all three of these goals, then there we have
nine different ways of satisfying (g,p,a). Moreover, every one of these agents can know of different sets of
tasks that can satisfy the goal she is delegated, and she may further delegate the execution of these tasks to
other agents. This point is made in Figure [I} it shows that a’s goal p is and-refined onto three goals, that
these three goals can be delegated in nine ways, and that each of the agents who is delegated one or more
of these goals also has options regarding what tasks to delegate to whom. This merely reflects the reality of
human organizations, in which there are many ways of realizing the same aim, depending on who is being
delegated what tasks.

We say informally that a solution of a goal is the joint behavior of people and machines within a socio-
technical system, which ends up bringing about a state of affairs in which the goal holds. A solution satisfies
a goal. Within R, there can be many different solutions of the goal (g,a,p), any one of which involves
agents and their execution of tasks, i.e., tasks delegated to agents. Figure |l| shows two solutions, one having
the task delegations (t,q1,qe,a4), (t,r3,74,a7) and (¢,s1,s2,as) (white boxes in Figure , and the other
having (¢, g3, qa, as), (t,71,72,a6) and (¢, s3, s4,a9) (black boxes in Figure . Note that a every task has two
propositions, the left stating preconditions and the right giving postconditions. The specification Spec(R)
will be a part of the requirements model R, and will contain a set of solutions for a set of parent goals (i.e.,
goals that are not refinements of other goals) from R.

Norm Model L. A norm model L is a set of well-formed sentences written in a modeling language L.
Similarly to R, there will be a modeling language in which the legal expert and/or the engineer record the
interpretation of legal text. £ will have a grammar that governs the formation of well-formed sentences over
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(9.p3,a3)

Figure 1: Two solutions of the goal (g, p, a).

sets Pr, Ry, Sp of symbols for, respectively propositions, roles, and sorts. We have roles in L instead of
agents, as law typically speaks not of particular agents, but of roles (e.g., patient, physician, buyer, seller, and
so on). Every sort symbol will refer to a concept in the legal ontology used in £. E.g., if there is the concept
of right in the chosen legal ontology, then there is bound to be a sort, which is associated to all propositions
that capture what is understood as a right in the legal domain. Since rights are attributed to legal subjects
(e.g., individuals) via roles, a model of legal norms needs the function Py, : P, — S, X Ry, to map every
proposition from law to a sort and a role. Triples (s € Sp,p € Pr,r € Ry), such that Pr(p) = (s,r) are
called normative propositions (Nps). In practice, an NP will be obtained from a sentence or a paragraph in
a regulatory text; consider again for example the passage from HIPAA on SAFEGUARDS, quoted earlier (§2)).
That passage can be interpreted to give an NP, in which there is one role, Person maintaining or transmitting
health information, a proposition Integrity and confidentiality of the health information is ensured, and a sort
to indicate the what legal concept (e.g., obligation) this proposition instantiates.

Compliance Assumptions C. Given Spec(R) and L, how are they related? The relations between individ-
ual (fragments of) Spec(R) and L cannot be obtained immediately from the two of them: the very purpose of
a method for the verification of compliance is to formulate a set C' of compliance assumptions. What a com-
pliance assumption ¢ € C does is that it relates propositions or well-formed sentences from Spec(R) to those
from L. How does this happen in practice? Suppose that ¢r and ¥ are two well-formed sentences from,
respectively Spec(R) and L, so that, e.g., ¢ may be ¢ = ¢pg — 11, where — is the implication connective. If
the framework for reasoning about compliance has modus ponens as an inference rule, then we apply modus
ponens to (¢gr,c) and conclude that ¥r. Suppose that we have a ¢r = g A ¢/, where “q: The patient’s file
is recewved for transfer from a doctor” and “q’: The patient file has been transferred to a doctor” and both ¢
and ¢’ have task for one sort and hospital nurse for the other. Stated otherwise, a nurse is delegated the task
to carry the patient’s file between doctors. Let “yp: Integrity and confidentiality of the health information
s ensured”. In this case, a compliance assumption ¢ = ¢r — ¥, relates these sorted well-formed sentences,
claiming that if the hospital nurse ensures that ¢g, then ¢ holds, i.e., we are compliant with .

3.2 Arguing Compliance

To encode this conclusion that compliance is verified through an process of argumentation, we define f~¢ as
a consequence relation within an argumentation framework. In doing so, a claim that “R complies with L”
is at best a tentative assertion, open to revision as requirements, legislation, and interpretation of legislation
change, and as new counterarguments are voiced which a given compliance framework cannot defend itself
against. Hence the need for a continual verification of compliance, clearly particularly relevant given that
change is more the rule than the exception in information systems engineering.

Suppose that we have Spec(R), L, and C, and that they are all well-formed formulas of a sorted proposi-
tional logic. Stated otherwise, we say that while £ and R may be different modeling languages, they differ
only in sorts and in that the former maps propositions to sorts and roles and the latter to sorts and agents.
In practice, R and £ may both be sorted propositional logics with the same proof theory, and thus the same
consequence relation FH We let T’ be an arbitrary (potentially inconsistent) set of well-formed formulas in

Hf R and £ are two different logics, e.g., the former a linear-temporal first-order logic, and the latter a deontic logic, then it
is necessary to find a joint framework in which the well-formed formulas of these two share a proof theory. This is a problem of



the logic in which Spec(R), L, and C are written.

Definition 3.1. (Compliance) argument. T C T is called a compliance argument for ¢ € T', written

(I, ) iff:

1. ¢ is a consequence of I': TV = ¢;

2. —¢ is not a consequence of TV: TV I —¢;

3. TV has only the necessary and sufficient well-formed sentences for the derivation of ¢: YI'! C TV, TV t/ ¢.
Ezample 3.2. Let IV = {¢r,dr — ¥}, then I is an argument for y,.

Definition 3.3. Compliance relation |~¢c. Let A(T") be the set of all arguments from T'. ¢ is compliant
with T, written T' |~ ¢ iff:

1. there is an argument for ¢ in A(T'), and
2. there is no argument for ~¢ in A(T).

Ezample 3.4. Let T' = {¢r,0r = ¥r,0r = Y1}, then T ¢ ¢ and T f~e vr.
Proposition 3.5. }~¢ is nonmonotonic.
Proof. (By contradiction.) If I' = {¢}, then I' ~¢ ¢, so that if —=¢ is added to I', ' U {—¢} e —¢. O

The following proposition says that nonmonotonicity appears only when I' is inconsistent w.r.t. ¢, and
this is the case when both I' - ¢ and I" - —¢.

Proposition 3.6. If T is consistent w.r.t. ¢, then T+ ¢ iff T }c ¢.

Proof. Obvious: if ' is consistent w.r.t. ¢, then T'F ¢ and T' I/ —=¢. If T ~¢ ¢ then by the definition of |~¢, T rc ¢,
so that there is an argument in T" for ¢ and there is no argument in I" for —¢. As there is no argument in I" for —¢,
there is no derivation from I" to —¢. O

3.2.1 Compliance Frameworks

Definition 3.7. Compliance framework. A compliance framework is a tuple C = (Spec(R), L, C,}~¢),
where R is a requirements model, L a norm model, C a set of compliance assumptions, and }~¢c the compliance
relation.

It is not difficult to see that |~¢ taken alone is defined in the same way as Benferhat, Dubois, and
Prade’s “argumentative consequence” [4], which itself follows a long line of work on argumentation in artificial
intelligence, and in particular Simari and Loui’s contributions [I4], and Dung’s seminal synthesis [7]. This
alignment with available results in Al is particularly useful, since it is now possible in a straighforward manner
to draw on fundamental contributions on the analysis of argumentation frameworks in order to define the
semantics and proof theory for compliance frameworks. In order to state precisely the relation between a
compliance framework and a (Dung’s) argument framework, we need the standard argument attack relation.

Definition 3.8. Argument attack relation (— ). Let A(T) be the set of all arguments constructed from T,

and let (T'y, ¢) and (Ty,v) be two arguments in A(T), then (T'y, ¢) attacks (g, V), written (U1, ¢) —— (o, 1))
iff the former either rebutes or undercuts the latter argument, where:

o (1, ¢) rebutes (T'a,¥) iff » = —¢;
o (T'y,¢) undercuts (T'a,v) iff e € Ty s.t. ¢ = —e.

logic interoperability. Interconnections between formalisms can be characterized using category theory (e.g., [8]), whereby the
relationships are established using functors; another way is to give common semantics to the different formalisms and translate
them all into a common style of predicate logic, so that the relationships between them can be described as translations through
the common syntax and semantics [I7]. We will remain in the cost-effective case in this paper, which does not require that
formalism be interconnected.



Ezample 3.9. If ({¢,¢ — b}, =) and {7,y — ¥},), then the former rebutes the latter, and the latter
rebutes the former argument.

Ezample 3.10. If ({9, ¢ — -}, ) and ({v,7 — —¢}, ~¢), then the latter undercuts the former argument.

The relation between a compliance framework and a (Dung’s) argumentation framework is given by the
following theorem.

Theorem 3.11. There is for every compliance framework C = (Spec(R), L, C, }~¢) a Dung’s argumentation
framework (A(T), =) such that:

1. T'= Spec(R) U LU C and A(T') is the set of all arguments from T, and

2. -5 is the argument attack relation.

Proof. (Trivial, from definitions.) An argumentation framework is by definition [7] a pair (A(T), —), where A(T) is
a set of arguments and — is a binary relation on A(T), i.e., =+C A(T') x A(T'). Dung leaves —— unspecified and

an argument an abstract entity without considering its internal structure. Our compliance framework populates an
argumentation framework, i.e., gives A(I") and —25 is defined in terms of the components of the compliance framework.
In doing so, every compliance framework populates an (Dung’s) argumentation framework. O

3.2.2 Semantics of Compliance Frameworks

Theorem [3.17] allows us to give to a compliance framework the semantics of the argumentation framework
that the compliance framework defines, and later to a proof theory that is particularly relevant from the
standpoint of defining a method for the verification of compliance.

Let a(@),b(d), c(¢), primed or indexed be arguments for their respective parameters, e.g., a(¢) = (I”, ¢).
The semantics follow Dung’s notion of extensions of an argumentation framework, letting us state precisely
what it means to say that an argument for, e.g., a legal norm in a compliance framework is acceptable. An
extension is simply a set of arguments that satisfies some properties. Definitions [3.12H3.14] closely follow
Dung’s definitions [7] and Amgoud and Prade’s rewriting [3] of Dung’s definitions.

Definition 3.12. Conflict-free set of arguments; Acceptable argument.
o A set S of arguments is conflict-free iff Ba(¢),b(¥) € S s.t. a(p) —= b(1)).

o a(¢) € A(D) is acceptable w.r.t. a set S C A(T) of arguments iff Vb(v) € A(D), if b(v)) == a(¢), then
Je(e) € S s.t. ce) == b(v).

Definition 3.13. Acceptability semantics. Let (A(T'), —=) be an argumentation framework and S C A(T')
a conflict-free set of arguments.

e S is an admissible extension iff every a(¢) € S is acceptable w.r.t. S.

e S is a preferred extension iff S is a mazimal (w.r.t. set C) admissible set.

o S is a stable extension iff it is a preferred extension that ——-attacks every argument in AI)\ S.
Given the definition of extensions, a status can be assigned to an argument.

Definition 3.14. Argument status. Let (A(T'),—=) be an argumentation framework and &y, ...,E, its
extensions. Let a(¢) € A(T):

e a(p) is skeptically acccepted iff V1 <i <z, a(¢) € &;
e a(9) is credulously accepted iff 3E; s.t. a(P) € &;
o a(¢) is rejected iff AE; s.t. a(¢p) € &;.



It is quite evident why the above are relevant for the verification of compliance. Given a compliance
framework C = (Spec(R), L, C, I~¢) and its associated argumentation framework (A(T), =), we may want
to design R so that Vi, € L, there is an argument a(,) € A(Spec(R)UC) and a(vr,) is skeptically acceptedﬂ
If every argument for every legal norm is skeptically accepted, then we have indeed defended all arguments
given for all legal norms, i.e., the compliance framework ensures compliance.

We can now relate extensions and the compliance relation |~¢ via Theorem which is a useful result:
it will allow us later to define the compliance problem as a problem of ensuring that a set of arguments
associated to a compliance framework is skeptically accepted.

A

Theorem 3.15. Let C = (Spec(R), L, C,}~¢c) be a compliance framework, (A(T'),—) its associated argu-
mentation framework, and &1, ...,E, the extensions of the given argumentation framework. If T f~c ¢ then
Ja(¢) € A(T') such that a(¢) € (i, &, i-e., a(¢) is skeptically accepted.

Proof. Because an argument can attack another argument in two ways (i.e., by rebutting or undercutting), the proof
has two parts:

1. The first part is to show that if I’ f~¢ ¢, then there is no extension that has a(—¢), so that no extension contains
an argument that rebutes a(¢). This is obvious: if I fr¢ ¢, then Ja(¢) € A(T) and AHa(—¢) € A(T'). Since
V1<i<uz, & C A(T), then clearly V1 < i < z, a(—¢) ¢ &;, i.e., no extension contains a(—¢). Stated otherwise,
if T~ ¢, then a(—¢) is rejected.

2. The second part is to show that if I' }~c ¢, then there is an argument a(¢) € A(I') and every argument
a(y) € A(T') that undercuts a(¢) is rejected. This second part of the proof is by contradiction. Suppose that
there is one argument a(y) € A(T') such that @ # —¢ (i.e., a(¢) does not rebute a(¢)) and a(y)) —— a(¢), so
that a(z) undercuts a(¢). Let a(¢) = (I, ¢) and a(p) = (T, ), and since a(¢), a(y)) € A(T), then IV C T and
I CT. Note also that by the definition of an undercut attack, if a(+) undercuts a(¢), then —¢) € I and thus
—¢p € I'. There are three cases to consider:

(a) a(v) is skeptically accepted, i.c., a(y) € (;_; &: Since a(¢) € A(I') and —¢p € IV, =4 is necessary for
the derivation of ¢. If the argument for 1, i.e., a(v) is skeptically accepted, then it is in every extension
possible to derive 9 from I'. If ¥ can be derived in every extension, then —¢ can be derived in at least one
extension, and thus a(—¢) € |J;_; &. This contradicts the assumption of I' }~¢ ¢, because by definition
of e, a(—¢) ¢ A(T), and thus V1 <i <z, a(—¢) ¢ &.

(b) a(v) is credulously accepted, i.e., 3&; such that a(y) € &:: Suppose that there is an extension & C A(T")
such that a(y) € &. Now, —) is necessary for the derivation of ¢. It follows that there must be at least
one other extension & C A(T"), such that a(—¢) € &£;. This contradicts the assumption of I |~¢ ¢, because
by definition of \~c, a(—¢) ¢ A(T'), and thus V1 < i <z, a(—¢) ¢ &.

(¢) It follows from (a) and (b) above that a(%) is rejected, i.e., AE; such that a(¢) € &;.

The conclusion of the proof is that if I' ¢ ¢, then Ja(¢) € A(T") and none of the attackers on a(¢) is in any of the
extensions of (A(I), —=). O

3.2.3 Proof Theory for Compliance Frameworks

The proof theory can now be defined for the semantics. The proof theory defines a practially applicable
approach to the evaluation of the status of a given argument, and thereby of the membership of that argument
in extensions. The proof theory is inspired by Simari and Loui’s justification process [14], closely related to
Amgoud and Cayrol’s notion of a dialogue [2], itself arising out of the modeling of argumentation in the legal
domain.

Definition 3.16. Justification process. The justification process consists of recursively defining and
labeling a dialectical tree T(a(¢)) as follows:

1. A single node containing the argument a(¢) with no attackers is by itself a dialectical tree for a(¢).
This node is also the root of the tree.

2We say “may”, because it can happen that a violation of legislation is preferred by the stakeholders of the information
system, which can happen, e.g., when they consider their private benefits of that violation to be superior to the costs of ensuing
sanctions.



2. Suppose that a(i1),a(2), ..., a(y) each attacks a(¢). Then the dialectical tree T(a(¢)) for a(¢) is
built by placing a($) at the root of the tree and by making this node the parent node of roots of dialectical
trees rooted respectively in a(1), a(a), ..., a(y).

3. When no other argument in A(T) can be added to the tree, label the leaves of the tree accepted (A). For
any inner node, label it undefeated if and only if every child of that node is a rejected (R) node. An
inner node will be a rejected node if and only if it has at least one A node as a child. Do the furth step
below after the entire dialectical tree is labeled.

4. a() is a justification iff the node a(¢) is labelled A.

It is clear that if a(¢) is justified, then it is skeptically accepted.

3.3 Compliance Problem

Definition 3.17. Compliance problem. Given L, find a compliance framework C = (Spec(R), L, C,}~¢)
such that:
Spec(R),C ¢ L

Theorem lets us reformulate the compliance problem as one the employs the justification process.
Namely, given a norm model L, find a compliance framework C = (Spec(R), L, C, |~¢) such that: Vi, € L,
Ja(yr) € A(Spec(R) U C) and a(yr) is skeptically accepted, or in other words, the dialectical tree T'(a(v1))
indicates that a(t) is a justification.

3.4 Testable Hypotheses

The rewriting of the compliance problem in terms of justification indicates that the verification of compliance
will amount to the construction of the dialectical tree for every argument a(v1,), ¥y, € L. The theory of com-
pliance thus hypothesizes that the verification of compliance will happen via the collection and confrontation
of arguments, and that requirements will be considered as compliant when all arguments for norms, i.e., all
a(yy) are evaluated as justifications via the justification process. The engineer and the stakeholders will
offer R, L, and C, and perhaps arguments that support the given legal interpretation L and the compliance
assumptions C. In turn, some stakeholders may disagree with the content of any of R, L, or C, offering
ccounterarguments, which will result in the lack of compliance. The engineer will in turn need to reestablish
compliance by counterarguing and perhaps modifying R, L or C. It follows that the extent to which compli-
ance will be verified will depend strongly on the availability of arguments that attack every a(¢y, € L). The
availability of such attacking arguments in turn depends on the activity /passivity of the stakeholders who are
attentive to the compliance of the requirements, which in turn means that in absence of such stakeholders,
dialectical trees are bound to be shallow. In a summary, the testable hypotheses are as follows.

Hypothesis 3.1. Verification of regulatory compliance of requirements proceeds as a justification process.

Hypothesis 3.2. Because of Hypothesis the compliance or moncompliance of a requirements model R
depends on the availability of arguments against every a(vy, € L).

Hypothesis 3.3. Because of Hypothesis[3.3, the more easily accessible are the attacking arguments, the more
resources (time, money, expertise) will be needed the verification of compliance.

Hypothesis 3.4. Because of Hypothesis i absence of stakeholders who can voice the attacking argu-
ments, the compliance of a requirements model will be verified over shallow dialectical trees.

4 The Nomos modeling language

Nomos is a goal-oriented modeling framework, intended to support analysts in building models of law-
compliant requirements as defined in section Ndmos is conceived as an extension of the i* modeling
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language [16], introducing a set of concepts to model laws. This way, it allows for a coherent representation
of both R and L.

Requirements in R are represented in Ndmos via ¢* concepts such as goals, which are states of affairs
desired by stakeholders, represented as actors. Goals can be And- or Or-decomposed into sub-goals, and can
be operationalized by means of tasks, which represent the solution for goals. Additionally, actor can delegate
to each other the achievement of goals and the execution of tasks. The i* language fits the definition given in
section of a requirements modeling language: the statements describing the intentionals concepts (goals,
tasks, resources) are in the set Pg; the sorts are Sg = {goal, softgoal, task,resource}, whereas i* actors
form the set Ag.

Similarly, elements of L are represented by giving an explicit supports the aforementioned concept of
normative proposition (NP). NPs are propositions with a normative semantics, and contain information
concerning: (i) the subject, who is addressed by the NP itself; (ii) the legal modality (i.e., whether it is a
duty, a privilege and so on); and (iii) the description of the object of such modality (i.e., what is actually a
duty or privilege). The legal modality is one of the 8 elementary rights, classified by Hohfeld [10] as: Privilege,
which is the entitlement for a person to discretionally perform an action, regardless of the will of others who
may not claim him to perform that action, and have therefore a No-claim; Claim, which is the entitlement
for a person to have something done from another person, who has therefore a Duty of doing it; Power,
which is the (legal) capability to produce changes in the legal system towards another subject, who has the
corresponding Liability; and Immunity, which is the right of being kept untouched from other performing an
action, who has therefore a Disability. So the sorts in L are the elements of S, = {duty, claim, privilege,
noclaim, power, liability, immunity, disability}; the subjects of the NPs form the set Ry ; and the object
of the NPs form the set Py,

Elements of R can be associated to elements of L by means of ‘realization’ relations, which form the set
C. When a goal realizes a NP, it means that the goal is either known to be, or intended to be, conform
with the NP. For example, the Nomos model of Figure [2| depicts the actor Patient that depends on Hospital
to access the healthcare services. Hospital provides this goal for the patient by fulfilling the goal (among
possible others) of booking internally the service (goal Book service; according to the notation introduced
in [2 p; = “Book healthcare service”, a; = “Hospital”, s; = ‘goal’). The Hospital, in turn, depends on its
internal Booking Service (BS) to book the service through the EPR. The BS asks the patients his/her data,
accesses the EPR system, and inserts the data. The Figure shows that the Hospital has towards the Patient
the duty to keep his/her Personal Health Information (PHI) closed. It is also shown — by means of the arrow
between the goal “Book service” and the NP “Don’t disclose PHI” — that by fulfilling that goal the Hospital
is compliant with the NP. The next section illustrates how we built this model, while the subsequent section
explains why the Hospital is considered to be compliant.

Book serviceg

Service

As
patient's
data

Access
health care

service
Legenda
AND
: ( Goal ) <Task> 7 N\ D / \
Normative And - Dec .
P " o Dependency Legal relation
roposition omposition

Figure 2: An example of a Ndmos model.
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5 The compliance process

The Ndomos language allows for building models of requirements that comply with law according to the theory
described in section [3| This is done through a process, which takes into consideration: (i) the production of
a compliance solution; (ii) the argumentation supporting (or attacking) such solution; and (iii) the algorithm
for making conclusions from the argumentation. The three corresponding phases form an iterative process,
in which argumentation moves from the modeled solution and may require to change it, until the algorithm
allows for deducing compliance acceptance.

Phase 1. Compliance modeling It basically consists in the application of the Noémos modeling process.
The methodological aspects of the process are described in detail in [13]: the process is basically comprised
by various steps, each of them starting by arguing a compliance issue, and ending with agreement on the
solution for that issue. For the purpose of this paper, we will focus on those parts of the process, which
deal with the actual establishment of the compliance condition, without considering law modeling aspects
mentioned in [13].

1. Identify applicable laws. Each NP addresses a subject. If a certain actor of the domain is subject to
the NP, the NP is applicable to it and it has to comply w.r.t. the NP. For example, if the law addresses a
“Covered Entity” (CE), and a stakeholder of the domain is a Hospital, we have to decide if the Hospital is
(or not) a CE. In the first case, the NPs of the law apply to the Hospital, and it has to be compliant. If an
actor is agreed to be a certain legal subject, this information is added to the argumentation tree.

2. Identify affected goals. Each NP applicable to a given actor can affect the actor’s strategy. A NP is not
affecting a strategic goal if the achievement of the goal, no matter how it is achieved, does not allow for a
violation of the NP. If, according to how a goal is achieved, the NP can be violated or respected, the goal
needs to be elaborated for compliance.

3. Choose realizing goals. A compliance goal appears in an actor’s rationale because the actor must be
compliant with some NP. A top-level compliance goal realizes a NP — i.e., there is a realization relation from
that goal to the NP, meaning that satisfying that goal satisfies the NP, and indicates compliance with that
NP. The realization relation results in practice in that the NP that the goal realizes is a constraint on the
definition of the solution for that goal: any solution for the goal must be such that the realization relation is
not violated, i.e., that it is not dropped by a solution because that solution satisfies the goal in a way that
violates the NP.

4. Refine compliance goals. A compliance goal must be refined in such a way that every alternative refinement
thereof must not violate the NP that this compliance goal realizes. Subgoals in the refinements must be chosen
in such a way that their joint satisfaction does not violate the NP.

5. Operationalize compliance goals. If g is a compliance goal for a given NP, a solution for it has to be sought
by refining/decomposing g onto subgoals, then finding tasks the execution of which satisfies the subgoals. If
g is AND-refined/decomposed onto subgoals g1 and go, then g is compliant if and only if the conjunction of
the two subgoals is compliant: neither the satisfaction of ¢g; alone, nor of g» alone is good enough to ensure
that g is satisfied. In general terms, the solution sol(g) for the compliance goal g is the conjunction of its
leaf tasks.

Outcomes. Definition II1.17 stated the compliance problem in argumentation terms as: Spec(R),C }¢ L.
After the application of the described process, we have that: L is the input model of the law we want to
address; R is the initial requirements set, refined in the steps 3 and 4; Spec(R) amounts in the solution for
R - i.e., the sets of tasks that operationalize the compliance goals; C contains the set of realization relations.
The compliance condition expressed by the }~¢ relation can’t however be formally proved. Rather, it has to
be argued by providing evidence that the compliance modeling choices are reasonably acceptable.

Phase 2. Argumentation The compliance of the framework is deduced form the dialectical tree T'(a(¢)).
The tree is primarily formed by the arguments collected during phase 1 of the process. For example, if
a goal delegation resulted from a consideration on the abilities of the delegatee in fulfilling the goal, such
considerations are added to the argumentation as a support that that modeling choice. Phase 2 consists in
debating about the modeling choices. Three types of argument can be given:

(i) Arguments in favor of the modeling choices; i.e., arguments that confirm the conclusions of the argumen-
tation tree built during the development of the solution (phase 1).
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(ii) Arguments in favor of for changing or replacing some parts of the solution; in this case, such arguments
are added to the argumentation tree, and a modeling activity is undertaken again to change R into an R'.
(iii) Arguments that reject partly or completely the conclusions of the argumentation tree; in this case, a
new solution for L has to be searched.

Phase 3. Verification The dialectical tree can be traversed for making conclusions form it by means
of a justification process as described in Definition II1.16. The process starts from the leaves and makes
conclusions on the acceptability of the roots, which are basically the compliance hypotheses (as of step 3
of phase 1). If the justification process allows for deducing acceptance of the compliance hypotheses, then
compliance is demonstrated on an argumentation basis. If compliance can be demonstrated for every NP,
we say that the requirements R are compliant with the law L. If new arguments come in, the validity of a
conclusion is not ensured anymore, and the process has to be iterated.

6 Example

Figure [2] depicted an example of a compliance solution for a certain NP. Why that model is actually a
solution? Is it really enough to claim compliance with the NP? Should the solution be revised?

HipAA section §45CFR164.314 states the general organizational requirements for privacy and security
that every Covered Entity (CE) has to respect. Who is a CE is defined in paragraph §45CFR164.501. With
regard to this definition, the Hospital: a; — “deals with patients’ PHI”; ay — “furnishes a business health
care service”; ag — “is a private company”. Without further going into the details, from the argumentation
T4, comprised by the arguments am, ag, am, one can argue the conclusion that the Hospital is a CE. So, the
NP from paragraph §502a: np, = A CE must keep patients’ PHI closed is applicable to the Hospital, and it has
to comply with it.

With respect to np;, the goal g1 (reported in Figure [3)) can be argued to be a possible violation point: a4
— if an operator retrieves EPR data, then he is a possible leak point in the system; this is an argument in favor of
the applicability of np; to gi1. A possible attack to ag is a5 — data into the EPR is anonymous, so there is no
need to keep it closed; this argument rebutes ag. Differently, ag is undercut by ag — at the registration, EPR data
must be associated with the patient’s identity. The arguments and attacks between them form a dialectical tree
T, as explained in Definition II1.16, which also indicates how to determine the accepted or rejected status
of each argument in the dialectical tree.

On the way for finding a solution for gy, we could argue that: a; — If PHI is only processed electronically, no
disclosure can happen through other channels; and ag — Preventing unauthorized access to PHI prevents its unauthorized
disclosure; then we argue a goal like go (Provide regulated EPR access) could allow for full compliance of gp;
with np,. So, from the dialectical tree Te = ( ag — ag) we hypothesize that g; can be a realizing goal
for np,. We add the “realization” relation between g; and np, to the set of compliance assumptions C;
so, C' = {sol(g1) — np,}. This hypothesis will guide the consequent modeling of the compliance solution
sol(gy). If successful, it will end up in the operationalization of g; in terms of tasks.

If we want to make compliant the whole process that underlies the Book service goal, we have to refine
g1. In the example of Figure [3] we have made some further addition to both the model and the dialectical
tree. We added ag = The booking service can be compliant, if we constrain the use of patient PHI to T, so that the
realizing goal is desired to be the higher-level goal Book service; also, we add the same argument to Tp, which
motivates the decomposition of g; into g and gs. Similarly, the modeling choice to delegate g3 to the BS
actor is added as an argument to T¢, and so on. Arguments like these form the dialectical tree T, which
is the justification for goal decompositions and delegation of the model in Figure |3 The goals added to the
model due to such arguments form new requirements in R.

The modeling process ends when a full operationalization of the compliance goals is found (step [5) —
i.e., when a Spec(R) is found. For the goal Book service through EPR in Figure 3| the BS has to ask the
personal information to the patient (task t7), access the EPR system (task ¢5) and insert the patient’s data
(task t5). Some of these tasks do not raise any compliance issue — for example, a1g = asking the data to the
patient, per se, does not result in data disclosure to others. In this case, the argument is added to Tp. Other tasks,
such as Access EPR system, can be attacked w.r.t. their capability to remain compliant. For example, it is
easy to argue that, a;; = while accessing the EPR system, the BS can perform unauthorized transmissions. However,
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Figure 3: An example of how the dialectical trees support the compliance evaluation provided by a Ndmos model.

due to the argumentation (in T¢) for the And-decomposition of the goal g1 (Book service), which undercuts
ary, we have that EPR can only be accessed in ways regulated by the Hospital. For readability concerns,
we have highlighted this situation in the picture by means of the goal dependency between the task and
the Constrain User data access of the Hospital actor. The meaning of the dependency is that the task can be
argued to be compliant due to the same argumentation that makes compliant the operationalization of the
Hospital goal. It can be proved that for each of the leaf tasks there is an argumentation saying that either
(a) the task does not raise compliance issues, or (b) the task is compliant with the normative proposition
due to an argumentation. Going back to Figure [1} the solution for Hospital’s goal g1 (sol(g1)) consists in an
and-decomposition of g; into go and g3, in the delegation of g3 to the BS, and in the and-decomposition of
g2 into t1,ta,t3,t4 and of g4 into ts,te, t7. The set t1,...,t7 form Spec(R), while (¢1,...,t7) — np,, form C.

The model in Figure |§| proposes a solution for the problem of the compliance of g; with np,. As said,
the proposed solution claims for an argument-theoretic acceptability rather than a truth-theoretic validity:
further arguments can be raised, challenging for example the correctness or completeness of the model, and
requiring to iterate again the process until an agreement on the model’s acceptability is found. On the other
hand, if, over the iterations, R changes to an R’, the non-monotonicity of ~¢ causes any acceptable solution
on R to be not necessarily acceptable on R’. For example, if we add to go another task — let say, tg = Save
monitoring log, then the addition of this new requirement can compromise the solution. In fact, saving the
monitoring log can be argued to create further privacy issues, since the log can be in turn be disclosed. In the
end, we have shown that a compliance solution can be expressed by the elements in the picture: a model of
L; some requirements R and their specification Spec(R); some compliance assumptions C; and the dialectical
tree associated to the model, which represent justification of acceptability for the compliance solution.

7 Related Works

Allen [I] firstly pointed out the possibility to formalize law as a logical theory, in order to be able to make
conclusions about the consequences of the law. Worth mentioning in particular Stamper’s LEGOL [I5],
a LEGally Oriented Language aimed at expressing a legislation by means of formal rules, suitable to be
processed by computers. The idea behind LEGOL was that legislations shape the behaviour of information
systems: regardless on how information systems are implemented, they perform within the boundaries created
by laws.

In recent years, law compliance has increasingly been addressed in relation with requirements engineering.
Anton and Breaux have developed a systematic process, called semantic parameterisation, which consists of
identifying in legal text restricted natural language statements (RNLSs) and then expressing them as semantic
models of rights and obligations [5] (along with auxiliary concepts such as actors and constraints).

Darimont and Lemoine have used KAOS as a modelling language for representing objectives extracted
from regulation texts [6]. Such an approach is based on the analogy between regulation documents and
requirements documents. Ghanavati et al. [0] use GRL to model goals and actions prescribed by laws. This
work is founded on the premise that the same modelling framework can be used for both regulations and
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requirements. Likewise, Rifaut and Dubois use i* to produce a goal model of the Basel II regulation [12].

8 Conclusions

We have proposed a formal framework for regulatory compliance through which one can establish that a set of
requirements complies with a given law. The framework is non-monotonic in that new compliance assumptions
may invalidate compliance, and relies on argument-theoretic — rather than truth-theoretic — concepts. The
framework is instantiated by adopting a particular modeling language for laws and requirements (Ndmos) and
a systematic process is presented for taking a given set of requirements R and a law L and refining/extending R
to generate a new set of requirements R’ that are compliant with L, assuming a set of compliance assumptions
C.

Ongoing work involves the application of the framework to several case studies in order to gain additional
insight into the relevance of the testable hypotheses. We are working on the refinement of the framework as
described in Section IV and studying whether argumentation with preferences [11] can be relevantly used in
Nomos. We intend to provide a complete software environment for the modeling of norms and requirements,
along with the component that will handle argumentation.
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