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Abstract

A requirements engineering artifact is valid relative to the stakeholders of the system-to-be if they agree
on the content of that artifact. Checking relative validity involves a discussion between the stakeholders
and the requirements engineer. This paper proposes (i) a language for the representation of information
exchanged in a discussion about the relative validity of an artifact; (ii) the acceptability condition, which,
when it verifies in a discussion captured in the proposed language, signals that the relative validity holds
for the discussed artifact and for the participants in the discussion; and (iii) reasoning procedures to
automatically check the acceptability condition in a discussions captured by the proposed language.
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1 Introduction

A basic question for requirements engineering (re) is how to find out what the stakeholders of a system-to-be
“really need” [8]. In response, re stars with the elicitation of requirements, the purpose of which is the
initial investigation of the goals, functions, and constraints of the system-to-be, as they are stated by the
stakeholders. Despite the difficulty of making a clear distinction between the various specific tasks that re
can involve [8], elicitation is acknowledged to be one of the three fundamental tasks in re, in addition to
validation and modeling/specification [14, 22].

Modeling/specification depends heavily on elicitation, for it is elicitation that provides the application
domain- and project-specific information that is, potentially in a changed form, represented in re artifacts
(i.e., models and specifications). re artifacts capture the elicited information in a format that lends itself to
specific analysis, which the stakeholders themselves have difficulty to perform, such as, e.g., the verification
of the internal consistency of requirements. Neither elicitation, nor modeling/specification can be successful
without validation. As Goguen and Linde observe, “[t]here are very good reasons why [stakeholders] often do
not, or cannot, know exactly what they need; they may want to see models, explore alternatives, and envision
new possibilities” [8]. A key purpose of requirements validation is to seek feedback from the stakeholders
on re artifacts so as to inform further iterations of elicitation and/or modeling/specification. To check the
validity of an re artifact is to determine if what it says about the system-to-be is in line with what the
stakeholders “really need”.

Problem. The aim of validation is ambitious: through repeated and intertwined performance of validation
together with elicitation and modeling, we would indeed hope to arrive at re artifacts that capture exactly
what the stakeholders really need. Such absolute validity should be distinguished from what we call relative
validity. While the former certainly stands as an ideal to aim for, the latter is achievable in practice and is
the concern of this paper.

Relative validity is concerned with whether the stakeholders agree on the content of an re artifact. Validity
is in this sense relative to the stakeholders. An re artifact is therefore valid in this sense if the stakeholders
agree that what it says about the system-to-be is acceptable to them. Stated otherwise, this form of validity
will verify if all the concerns, which the stakeholders raised, are answered.

It is safe to say that we cannot know if the stakeholders agree on an artifact if we do not give them
the possibility to raise their concerns. The engineer can inform them in this task by providing graphical
animations of a behavior model [21], the results of checking of predefined properties on models made from
parsed text [7], explicit accounts of (the inconsistencies between) different viewpoints on the system-to-be [14].
In each of these cases, the engineer will be producing information to present in a potentially summarized form
to the stakeholders, and then discuss it. Checking relative validity inevitably leads to a discussion between
the stakeholders and the requirements engineer.

Contributions. This paper focuses on the modeling and analysis of a discussion between the stakeholders
and requirements engineers about the relative validity of an re artifact. By building on contributions in
design rationale research, argumentation research in artificial intelligence, and graph traversal algorithms,
our aims are to: (i) provide a simple but expressive propositional model of the explicit exchange of infor-
mation in what is usually called a discussion; (ii) based on the model of a discussion, propose a condition,
called the acceptability condition on an artifact (denoted AC), such that if it holds, then it signals that the
relative validity verifies for that artifact and for the participants in that discussion; and (iii) if a concrete
discussion is recorded (as is the case when discussions are realized in forum-like applications), then check
automatically if AC holds at some point in the discussion. To meet these aims, we propose the Acceptability
Evaluation framework, henceforth ace. ace can be seen as a simple propositional reasoning framework, that
is independent of the re method that produces the artifact, and of the application domain.

Organization. Basic assumptions are first discussed, and a preliminary definition of the acceptability
condition is proposed (§3). The two components of ace are then presented: the language to record the
information relevant to the evaluation of acceptability (§4), and (ii) algorithms for retrieving the recorded
information and evaluating its acceptability (§5). The full definition of the acceptability condition is then
given in light of the complete ace framework (§6). Notes some implementation considerations are then
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outlined (§7) and the related work is discussed (§8). We end with a summary of conclusions and point to
future work (§9).

2 Baseline

What is typically called a discussion is, roughly speaking, a complex exchange of information between po-
tentially many participants. Various properties of a discussion can be studied, such as its topic, purpose,
(dis)organization, and so on. We focus on discussions about re artifacts, the purpose of which is to reach a
conclusion about the relative validity of the artifacts. We are interested in the specific traits of the structure
of such discussions. These are the inference, attack, and preference relationships between pieces of informa-
tion offered in a discussion. Inferences connect premises to conclusions, attacks connect somehow opposing
information, and preferences compare in terms of desirability the conditions described via the various pieces
of information offered in the discussion.

The range of discussions we focus on is not confined to specifc remethods and artifacts. Leite and Freeman
[14] observed that “the whole process of [re] is a web of subprocesses, and it is very difficult to make a clear
distinction between them”. A subprocess in that web amounts to the application of some re method to
specific inputs, in order to produce an output, itself fed into the application of another method, and so on.
To remain general, we can say that the application of any re method, i.e., any subprocess in the complex
re web, fits the abstract input-transformation-output pattern. Namely, in a given application domain D,
information elicited or produced by another re method acts as the input ID to a domain-independent re

method, symbolized by the function T . The latter produces the domain-specific output OD, i.e., OD = T (ID).
E.g., the refinement of a requirement asks for an abstract requirement and domain-specific knowledge as its
inputs ID, and results in a set of less abstract requirements as its output OD, while the transformation T
establishes the relations, such as consistency, that must verify between inputs and outputs. Observe that ID
and OD, or any part thereof is clearly an re artifact. Moreover, we can view the application of a method to
specific inputs, i.e., T (ID) as an artifact itself: there really seems to be no strong argument not to allow the
participants to discuss the engineer’s choice of applying T to ID.

Discussion performed to the aim of checking the relative validity of the application of an re method,
i.e., OD = T (ID), or equivalently, the relative validity of individual artifacts OD, T (ID), and ID, consists of
offering information in favor or against these, and providing opinions about the relative desirability of the
offered information. If I agree with you, I can provide additional information to support your position; if
we disagree, I can offer information against your positions; if I have no further information to offer in favor
of or against that which has been offered, I can say which of the already present conclusions I prefer to
others. OD = T (ID) will be acceptable if and only if no information offered against any of the components
of OD = T (ID) holds by the end of the discussion. Acceptability signals agreement. It is reasonable to
interpret agreement as relative validity. It is by analysing a discussion that we can determine if there is
agreement about the artifacts being validated, and thereby if they are valid relative to the participants in
the discussion. If the parties agree that the given inputs ID transformed by the application of the method
T give OD, then they agree that OD = TD(ID) holds, so that the given method application is acceptable,
denoted AC(ID, T (ID), OD).

3 Acceptability Condition

Definition 3.1. AC. The application of the re method T to the input ID to produce the output OD is
acceptable, denoted AC(ID, T (ID), OD) if and only if:

AC(ID) ∧AC(T (ID)) ∧AC(OD) (1)

In order to apply to any method, ace sees any re artifact, or part thereof, as a proposition. In concep-
tualizing a proposition, we follow McGrath’s [16] stipulation that propositions “are the sharable objects of
the attitudes [(i.e., what is believed, desired, etc.)] and the primary bearers of truth and falsity”. Regardless
then of the syntax and semantics of the re method deployed to produce an artifact, the artifact itself is a con-
junction of propositions. Symbols p, q, and r, indexed when needed, denote individual propositions. In(ID),
In(OD), and In(T (ID)) denote the sets of propositions, respectively in ID, OD, and T (ID). We assume that
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all propositions in ID, T , and OD are visible to all participant in a discussion about the relative validity of
these artifacts. A participant having information in favor or against any proposition in In(ID), In(OD), and
In(T (ID)) will voice that information. We evaluate the acceptability of the individual propositions in In(ID),
In(OD), and In(T (ID)) in order to verify AC(ID, T (ID), OD):

AC(ID, T (ID), OD) iff ∀p ∈ In(ID) ∪ In(OD) ∪ In(T (ID)), AC(p) (2)

The acceptability of a given proposition p is automatically verified in ace via an algorithm that analyzes the
information given in favor or against p, and captured via a language defined in the following section.

4 Language

We first present exemplified overview of the language (§4.1), then provide a detailed definition of the language
(§4.2).

4.1 Overview of the Language

All information relevant for the evaluation of acceptability is encoded into a directed labeled graphG, with the
set of vertices V (G) and lines L(G), and the labeling functions λV and λL for vertices and lines, respectively.
Any one proposition p or a conjunction of propositions in any of In(ID), In(OD), and In(T (ID)) is captured
by exactly one vertex v ∈ V (G). As all lines carry the same label ∀l ∈ L(G), λL(l) = To, there is no need
to write this label in graphs. There are four labels for vertices: ∀v ∈ V (G), λV (v) ∈ {i, I, C, P}. G together
with the labeling functions and the propositions forms the syntax of the language. Consider the following
example for illustration.

Suppose that the aim is to build a system that would deliver music on-demand: a user visits a website,
chooses songs from a database, and can play them in the audio player on the website. The following is an
important goal:

(Ex.1) g1: Generate revenue from the audio player.

We refine it by the conjunction of the three goals g2, g3, and g4 below:

(Ex.2) g2: Display text ads in the audio player.

(Ex.3) g3: Target text ads according to users’ profiles.

(Ex.4) g4: Maintain the player free to all users.

We therefore have ID = g1 and OD = g2 ∧ g3 ∧ g4. The applied re method is the standard AND-refinement
of a goal [5]. We capture the application of AND-refinement in the example via the graph shown in Ex.1.

(Ex.5)

i(g1)

��
IT (i(g1), {i(g2), i(g3), i(g4)})

sshhhhhhhhh

�� ++VVVVVVVVV

i(g2) i(g3) i(g4)

The refined goal g1 and the components g2, g3, g4 of its refinement are assigned the label i because of their
role as the inputs and outputs to the application of an inference rule, denoted IT (i(g1), {i(g2), i(g3), i(g4)}).
The label i is assigned to an information vertex, which serves as the input and/or output to the application
of an inference rule, corresponding to the label IT . An inference rule vertex in G represents the application
of some particular rule of deductive or ampliative inference to inputs in order to obtain the given outputs.
An example of deductive inference is modus ponens. Inference or reasoning is ampliative when a conclusion
is inferred, which includes information absent from the premises, from which the conclusion is inferred.
Examples of rules of ampliative inference are induction by enumeration, reasoning with analogies, causal
reasoning. Refinement, as any method is an inference rule, so that the application of AND-refinement is

5



i(g1)

��
IT

uukkkkkkkkkkk

�� ))SSSSSSSSSSS

i(g2) i(g3) i(g4)

rreeeeeeeeeeeeeeeeeeeeeeeeee

P1

,,YYYYYYYYYYYYYYYYYYYYYYYYYY // C2 //

))SSSSSSSSSSSS C1

OO

i(p1)

OO

IMP,1

22eeeeeeeeeeeeeeeeeeeeeeee
IMP,2

55kkkkkkkkkk

IMP,3

OO

i(p2)

OO

i(p3)

OO

i(p4)

OO

i(p2) → i(p1)

??

i(p3) → i(p1)

??

i(p4) → i(p1)

??

Figure 1: ace graph capturing the application of the refinement method to the goal g1 and the information offered
in the discussion of that application of refinement.

represented by IT (i(g1), {i(g2), i(g3), i(g4)}) in the graph. Any transformation T translates into at least
one I vertex; it will equate to more vertices when we are not content with evaluating the acceptability of the
application of the method as a whole (i.e., the black box approach), but are interested in evaluating in detail
the acceptability of the various steps or other considerations called for in the application of the method.
The meaning of each line is derived from the vertices it connects, and its direction. The line from i(g1) to
IT (i(g1), {i(g2), i(g3), i(g4)}) is understood as stating that the former is the input to the application of the
given inference rule, IT .

An information vertex (i) can be involved in the application of a conflict (C) or of a preference rule (P).
Suppose that a stakeholder indicates the following:

(Ex.6) p1: Revenue can be generated by charging subscriptions to users

A vertex labeled C indicates an application of a conflict rule, that is, the application of criteria giving rise to
a conflict between two or more other vertices in the graph. Since it is clear that not all features of the player
are free when a paid subscription is available, we add the conflict vertex C1(i(p1), i(g4)) to the graph.

(Ex.7) C1: Subscription and advertising revenue models should not be combined on this
system.

Additional information can be found to elaborate on the subscription revenue model:

(Ex.8) p2: Part of the music database can be restricted, so that the player only plays 30
seconds of some songs, until the user buys a subscription to listen full songs.

(Ex.9) p3: According to competitors’ services, some users are willing to pay to choose a
different graphical layout for the online audio player; users can be allowed to choose

among different graphical layouts and pay for each.

(Ex.10) p4: Two versions of the player can be offered, one with basic and free features, and
another with advanced features requiring subscription.

We choose to relate each of p2, p3, p4 via the modus ponens inference rule to p1. Say that a survey concludes
that users strictly prefer a free music on-demand service to one based on subscription. We capture this
strict preference by the preference vertex P1(i(g4), i(p1)) and lines from i(g4) to P1(i(g4), i(p1)), and from
P1(i(g4), i(p1)) to i(p1) in accordance to the direction of preference. A preference vertex represents the

6



application of a preference rule, that is, the application of criteria defining a strict preference order between
the conditions described in two or more other vertices; we can write that rule as follows:

(Ex.11) P1: Users strictly prefer a free music on-demand service to one based on
subscription.

If the stakeholders agree that P1(i(g4), i(p1)) resolves the conflict C1(i(p1), i(g4)), then an application of a
conflict rule will be added, C2(P1, {C1, i(p2)}), from P1(i(g4), i(p1)) to C1(i(p1), i(g4)) and i(p2).

(Ex.12) C2: Users’ preference of free over subscription services should be satisfied.

Figure 1 summarizes this discussion; applications of inference, conflict, and preference rules are given in the
abbreviated form therein (i.e., P1 is written in place of P1(i(g4), i(p1))), and each application of the modus
ponens inference rule is indexed differently as it takes different inputs, i.e.:

• IMP,1({i(p2)→ i(p1), i(p2)}, i(p1)),

• IMP,2({i(p3)→ i(p1), i(p3)}, i(p1)), and

• IMP,3({i(p4)→ i(p1), i(p4)}, i(p1)).

There are three constraints (1)–(3) imposed by the meaning of the To relationhship. (1) Any two vertices
in G can be connected by at most one line. (2) No two information vertices can be connected; any information
vertex must be connected to an inference, conflict, or preference vertex, for it is these vertices that establish
the use to which the information vertices are put in G. (3) Any inference, conflict, or preference vertex
must have at least one line that enters it, and another that exits it. There are no restrictions on the label
of vertices to which an inference, conflict, or preference vertex can be connected. This makes the language
rather versatile, as some forms of meta-reasoning can be captured. A preference may be given between other
preferences (e.g., P1 −→ P3(P1, P2) −→ P2) to capture the priority among preferences. Inference rules can
be compared in terms of preference (e.g., I1 −→ P(I1, I2) −→ I2). Conflicts between preferences can be
described, along with conflicts between conflicts, and conflicts between applications of inference rules.

4.2 Definition of the Language

We start from a terminology with four concepts. An ace graphs captures the use of the instances of these
concepts.

Definition 4.1. ace terminology. The ace terminology is the quadruple:

〈Proposition, Inference rule,Conflict rule,Preference rule〉 (3)

The concepts in the ace terminology obtain informal meaning as follows.

Definition 4.2. Proposition [16]. Any instance of Proposition is a shareable object of attitude (i.e., objects
of beliefs, desires, intentions) and is a primary bearer of truth and falsity.

Remark 4.3. Instances of proposition are not restricted to a particular langage or class(es) of language(s).
As usual then, a proposition can be a sentence in natural language, or a sentence in a predicate logic.

Definition 4.4. Inference Rule. Any instance of Inference rule is a particular rule of deductive or amplia-
tive inference that is applied to a nonempty set of propositions in order conclude another nonempty set of
propositions.

Example 4.5. We applied modus ponens in our earlier example (cf., §4.1) to conclude i(p1) from i(p2) and
i(p2) → i(p1). The inference rule in that case is modus ponens. For an example of an ampliative inference
rule, suppose that we have the following proposition:

(Ex.13) Main competing service for on-demand music had less than a hundred thousand
users in the first month of operation in a country with the same population.

This may lead us to conclude the proposition below:
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(Ex.14) The on-demand music service that is being built will not have more than a hundred
thousand users in the first month of operation.

To conclude this proposition, we applied reasoning by analogy, which is an ampliative inference rule.

Definition 4.6. Conflict Rule. Any instance of Conflict rule are criteria indicating that a nonempty set
of propositions opposes another nonempty set of propositions.

Remark 4.7. Conflict rules may, but need not be project- and domain-independent. Logical inconsistency
is an example of a domain- and project-independent rule of coflict. A project-dependent rule of conflict
may indicate that conditions described by two propositions are alternative (hence, conflicting) not because
they alone are logically inconsistent, but because together, they violate the conflict rule (e.g., meeting the
conditions in both propositions together would overrun a deadline or budget).

Definition 4.8. Preference Rule. Any instance of Preference rule are criteria indicating that the truth of
a nonempty set of propositions is stritly preferred to the truth of another nonempty set of propositions.

Remark 4.9. Any instance of Comparison rule equates to a binary relation on the universe of propositions.
Let ≻i symbolize a generic ith instance of Comparison rule. The intuitive reading of p ≻ p′ is “the truth of p
is strictly better than the truth of v′”. A particular instance of Comparison rule, i.e., some ≻i is not property
neutral, whereby its properties are identified when collecting its applications to propositions. E.g., some ≻i

will be transitive, while others will not. What does it mean to say that an instance of Preference rule “are
criteria”? Recall the earlier example (cf., §4.1), where we captured by a strict preference the conclusion of
a survey, which say that users strictly prefer a free music on-demand service to one based on subscription.
This users’ preference is a criterion that we use to compare propositions pertaining to the preference. This
criterion gives us an instance of a Preference rule. Now, if we subsequently establish that users strictly prefer
a subscription-based music service to a per-song payment (i.e., if the user listens ten songs, she pays ten
times the unit price of a song), and that the free service is strictly preferred to a per-song payment, then our
instance of Preference rule is transitive for the three given propositions.

A discussion of the acceptability of the application of an re method involves the application of inference
rules, conflict rules, and preference rules. Instances of Inference rule are are applied to premises in order to
draw conclusions. Instances of Conflict rule are used to highlight opposition between the conditions described
by propositions. Instances of Preference rule are employed to indicate relative desirability of what the relevant
propositions describe. It is therefore not the instances of inference, conflict, and preference rules that are
captured for analysis in ace, but the application of these instances to propositions.

Definition 4.10. ace Graph (G). An ace graph G is a directed labeled graph:

G = 〈V (G), L(G), Vλ, Lλ, ι, λV , λL〉 (4)

where: V (G) is a finite set of vertices (i.e., nodes, points); L(G) is a finite set of lines (i.e., edges); Vλ is the
set of labels for vertices; Lλ is the set of labels for lines; ι, the incidence function, is a function from L(G)
to (V (G))2; λV , the vertice labeling function, is a function from V (G) to Vλ, associating with each vertex in
V (G) a label from Vλ; λL, the line labeling function, is a function from L(G) to λL that associates with each
line in L(G) a label from λL.

Example 4.11. Figure 1 shows an ace graph.

Definition 4.12. Labels for Vertices (Vλ). Vλ = {i, I, C, P}.

Remark 4.13. A vertex labeled i is called an information vertex, or simply information, and I, C, P are
called, respectively, inference, conflict, and preference.

Definition 4.14. Vertex Labeling Function (λV ) and the meaning of vertex labels. For some vertex
v ∈ V (G):

• λV (v) = I iff v represents the application of an instance of Inference rule to specific propositions;

• λV (v) = C iff v represents the application of an instance of Conflict rule to specific propositions;

8



• λV (v) = P iff v represents the application of an instance of Preference rule to specific propositions; and

• λV (v) = i iff v is a proposition that is neither the application of an instance of Inference rule, nor
Conflict rule, nor Preference rule.

Remark 4.15. The case λV (v) = i is defined above in contrast to the other three cases. This is because any
application of an instance of Inference rule is evidently a proposition: if we denote the inference rule with
a predicate, the application of the inference rule gives us a predicate with no free variables, which thereby
carries a truth value and is a proposition. Same applies for instances of Conflict rule and Preference rule:
any application of a specific conflict or preference rule is a proposition. Not all instances of propositions are
applications of inference, conflict, or preference rules. Consequently, if we have an instance of Proposition

that is not itself the application of an inference, conflict, or preference rule to other propositions, then
that proposition is called an information. By allowing an inference, conflict, or preference rule to apply to
propositions, and as these applications are themselves propositions, we allow forms of meta-reasoning in ace,
which we mentioned earlier (cf., §4.1).

Definition 4.16. Labels for Lines (Lλ). Lλ = {To}.

Definition 4.17. Line Labeling Function (λL). ∀l ∈ L(G), λL(l) = To.

Remark 4.18. The set of line labels is a singleton, so that all lines carry the same label and we chose above
to omit this label from the visualization of the graphs (§4.1).

Definition 4.19. Incidence Function (ι). The incidence function obeys the following two constraints:

1. for any ace graph G and any two distinct vertices {v, v′} ⊆ V (G), if there is a line from v to v′ in
L(G), then there can be no line from v′ to v in L(G), that is:

∀G, ∀{v, v′} ⊆ V (G), if ι(v′v) 6= ∅ then ι(vv′) = ∅ (5)

2. no line can connect two information vertices, that is:

∀G, ∀{v, v′} ⊆ V (G), 6 ∃l ∈ L(G) s.t. ι(l) ∈ {v′v, vv′} and λV (v) = λV (v
′) = i (6)

Definitions of the ace terminology together with the vertex labeling function provide the informal meaning
of the vertices in an ace graph. The meaning of a line in an ace graph are determined from the vertices
that the line connects and the direction of the line.

Definition 4.20. Informal Meaning of the Lines. The meaning of the lines are given in Table 1 as a
function of the labels on vertices that the line connects and the direction of the line.

5 Algorithms

The graph in Figure 1 is a summary of the information offered in favor of and against the application of
the AND-refinement method in Ex.1. Given such a graph, two tasks are relevant. The first, retrieval task
is to search for particular subgraphs G in order to retrieve information that may be of relevance for further
discussion among the participants and the evaluation of acceptability. The second, evaluation task is to
determine if some specific application of an re method is acceptable. We discuss the retrieval (§5.1) and
evaluation (§5.2) tasks in turn below.

5.1 Retrieval

An ace graph is built by incrementally adding information and/or the applications of inference, conflict, and
preference rules offered by the participants in the application of the re methods. The subgraphs an ace

graph are retrieved to inform further debate and to act as the input to the evaluation of acceptability.
Equation 2 indicates that the application of an re method is acceptable if and only if each proposition

describing the inputs (i.e., In(ID)), the application of the method to these inputs (i.e., In(T (ID))), and the
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Table 1: Informal meaning of the lines in an ace graph. Columns indicate the label of the vertex, in which the line
starts, while the corresponding column indicates the label of the vertex, in which the line ends. The intersection of a
row and a column provide the informal meaning of the line. We use the following notational convention: in Ie(Col, ·),
Ce(Col, ·), and Pe(Col, ·), Col is replaced by the column head; e.g., at the intersection of the column is and Ie(Col, ·),
Col = is, so that Ie(Col, ·) = Ie(is, ·).

is Is Cs Ps

ie Not allowed, because it
is unclear why they are
linked.

Is(·, ie) −→ ie: The in-
ference rule application
Is concludes the infor-
mation ie.

Cs(·, ie) −→ ie: The
conflict rule application
Cs makes the informa-
tion ie attacked by some
other vertices.

Ps(·, ie) −→ ie: The
preference rule appli-
cation Ps makes the
information ie strictly
less preferred than some
other vertices.

Ie(·, ·) Not allowed, because an
information vertex must
be either a premise or
a conclusion of an in-
ference rule application,
and is is not mentioned
in Ie(·, ·).

Is(·, Ie) −→ Ie(·, ·): The
inference rule application
Ie(·, ·) is the conclusion
of the inference rule ap-
plication Is(·, ·).

Cs(·, Ie) −→ Ie(·, ·): The
conflict rule application
Cs makes the inference
rule application Ie(·, ·)
attacked by some other
vertices.

Ps(·, Ie) −→ Ie(·, ·): The
preference rule applica-
tion Ps makes the in-
ference rule application
Ie(·, ·) strictly less pre-
ferred than some other
vertices.

Ie(Col, ·) is −→ Ie(is, ·): Infor-
mation is is a premise in
the inference rule appli-
cation Ie.

Is −→ Ie(Is, ·): Infer-
ence rule application Is

is a premise in the infer-
ence rule application Ie.

Cs −→ Ie(Cs, ·): Conflict
rule application Is is a
premise in the inference
rule application Ie.

Ps −→ Ie(Ps, ·): Prefer-
ence rule application Is

is a premise in the infer-
ence rule application Ie.

Ce(·, ·) Not allowed, because an
information vertex linked
to a conflict rule appli-
cation must be subjected
to that conflict, and is is
not mentioned in Ce(·, ·).

Is(·, Ce) −→ Ce(·, ·): The
conflict rule application
Ce(·, ·) is the conclusion
of the inference rule ap-
plication Is(·, ·).

Cs(·, Ce) −→ Ce(·, ·): The
conflict rule application
Cs makes the conflict
rule application Ce(·, ·)
attacked by some other
vertices.

Ps(·, Ce) −→ Ce(·, ·):
The preference rule ap-
plication Ps makes the
conflict rule application
Ce(·, ·) strictly less pre-
ferred than some other
vertices.

Ce(Col, ·) is −→ Ce(is, ·): Infor-
mation is attacks some
other vertices by the con-
flict rule application Ce.

Is −→ Ce(Is, ·): Infer-
ence rule application Is
attacks some other ver-
tices by the conflict rule
application Ce.

Cs −→ Ce(Cs, ·): Con-
flict rule application Is
attacks some other ver-
tices by the conflict rule
application Ce.

Ps −→ Ce(Ps, ·): Prefer-
ence rule application Is
attacks some other ver-
tices by the conflict rule
application Ce.

Pe(·, ·) Not allowed, because an
information vertex linked
to a preference rule appli-
cation must be subjected
to that preference, and
is is not mentioned in
Pe(·, ·).

Is(·, Pe) −→ Pe(·, ·): The
preference rule applica-
tion Ce(·, ·) is the conclu-
sion of the inference rule
application Is(·, ·).

Cs(·, Pe) −→ Pe(·, ·): The
conflict rule application
Cs makes the preference
rule application Pe(·, ·)
attacked by some other
vertices.

Ps(·, Pe) −→ Pe(·, ·): The
preference rule applica-
tion Ps makes the pref-
erence rule application
Pe(·, ·) strictly less pre-
ferred than some other
vertices.

Pe(Col, ·) is −→ Pe(is, ·): Prefer-
ence rule application Pe

makes the information is

strictly preferred to some
other vertices.

Is −→ Pe(Is, ·): Prefer-
ence rule application Pe

makes the inference rule
application Is strictly
preferred to some other
vertices.

Cs −→ Pe(Cs, ·): Prefer-
ence rule application Pe

makes the conflict rule
application Cs strictly
preferred to some other
vertices.

Ps −→ Pe(Ps, ·): Pref-
erence rule application
Pe makes the prefer-
ence rule application Ps

strictly preferred to some
other vertices.
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outputs is acceptable (i.e., In(OD)). To inform the participants of some specific proposition, or evaluate the
acceptability of that proposition, we retrieve the vertex in the ace graph that captures this proposition,
along with all vertices relevant to the acceptability of that vertex.

Definition 5.1. AC-Relevant vertex. A vertex v′ is relevant to the acceptability of another vertex v in
the same ace graph if and only if v′ is directly or indirectly, in favor or against v.

Example 5.2. Return to Figure 1 and consider the vertex i(g4). The vertex IT is in favor of i(g4), as i(g4)
is a conclusion of the inference application IT . Moreover, IT is directly in favor of i(g4) given that there is a
line from IT to i(g4). The vertex i(g1) is a premise to the inference application IT , and is therefore directly
in favor of IT . Since i(g1) is directly in favor of IT , IT is directly in favor of i(g4), and there is no line from
i(g1) to i(g4), the vertex i(g1) is indirectly in favor of i(g4). It is clear that the conflict application C1 is
against i(g4), as the conflict application opposes i(p1) to i(g4). The line C1i(g4) makes C1 directly against
i(g4).

There are two ways for a vertex v′ to be directly against another vertex v: v′ may make v attacked, or it
may make v dominated.

Definition 5.3. Attacked Vertex. A vertex v ∈ V (G) is attacked iff there is a line l ∈ L(G) from a conflict
vertex to v, i.e., ∃l = v′v ∈ L(G) s.t. λV (v

′) = C.

Remark 5.4. In a subgraph pattern v′ −→ C(v′, v) −→ v, we say that v′ attacks v via the conflict rule
application C(v′, v); or equivalently, v is the attacked vertex, v′ is the attacker vertex, and C(v′, v) is the
attack.

Example 5.5. In the attack C2, P1 is the attacker vertex, while and C2 and i(p1) the attacked vertices. In the
attack C1, i(g4) is attacked by i(p1).

Definition 5.6. Dominated Vertex. A vertex v ∈ V (G) is dominated iff there is a line from a preference
vertex to v, i.e., ∃l = v′v ∈ L(G) s.t. λV (v

′) = P.

Remark 5.7. In a subgraph pattern v′ −→ P(v′, v) −→ v, we say that v′ dominates v via the preference rule
application P(v′, v), or equivalently, that v′ is strictly better than v.

Example 5.8. The preference rule application P1(i(g4), i(p1)) in Figure 1 indicates that i(g4) is strictly better
than (i.e., dominates) i(p1).

Both the conflict rule application that is an attack to a vertex, and the preference rule application making
a vertex dominated, are directly against a vertex. While the attack on a vertex v is directly against v in
v′ −→ C(v′, v) −→ v, the attacker v′ is indirectly related to v. Since v′ attacks v via the conflict rule
application, v′ is indirectly against v. Similarly, v′ in v′ −→ P(v′, v) −→ v is indirectly against v. It is clear
that whether v is acceptable in v′ −→ C(v′, v) −→ v will depend on whether C(v′, v) is acceptable, which in
turn depends on the acceptability of v′: if the attacker is not acceptable, then the attack is irrelevant, and
the attacked vertex is acceptable. Definition 5.1 and the examples above lead us to the following practical
result.

Proposition 5.9. If there is a path from a vertex v′ to v in an ace graph, then v′ is relevant to the
acceptability of v.

Proof. Cf., Appendix A.1.

Corollary 5.10. In any given ace graph G, all vertices on all paths that end in v are relevant to the
acceptability of v.

The question at this point is if all vertices on all paths that end in v are the only vertices in G that are
relevant to the acceptability of v.

Proposition 5.11. In any given ace graph, if there is no path from a vprime to another vertex v, then v′ is
not relevant to the acceptability of v.
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Figure 2: The discussion D[i(g4)] from the ace graph in Figure 1.

Proof. We prove Proposition 5.11 by contradiction. Suppose that v′ is relevant to the acceptability of v, but
that there is no path from v′ to v. We know from Definition 5.1 that v′ is relevant to the acceptability of
v if and only if v′ is directly or indirectly, in favor or against v. If there is no path from v′ to v, then there
is obviously no path from v′ to any vertex that is on any path that ends in v. Equivalently, there is no line
in L(G) that connects v′ to any vertex on any path that ends in v. This leads to three observations: (i) v′

is not a premise to an inference rule application concluding a vertex on a path that ends in v; (ii) v′ does
not attack a vertex on a path that ends in v; and (iii) v′ does not dominate a vertex on a path that ends in
v. This leads to a contradiction, as v′ must stand in at least one of the said three relationships to v (and/or
any vertex that is relevant to the acceptability of v) if it is to be relevant to the acceptability of v.

Example 5.12. There are no paths between i(g2) and i(g3) in Figure 1, so that neither of these vertices is
relevant for the acceptability of the other.

Remark 5.13. Observe that if v′ is not relevant to the acceptability of v, then v may be relevant to the
acceptability of v′. This occurs when there is a path from v to v′, but no path from v′ to v.

We are interested in retrieving all parts of a given ace graph that are sufficient to evaluate the acceptability
of some specific vertex. Corollary 5.10 and Proposition 5.11 indicate that we must retrieve all distinct paths in
G that end in v, in order to evaluate the acceptability of v. This leads us to introduce the notion of discussion,
which, for a given vertex v ∈ V (G) carries all parts of the graph G that are necessary to determine whether
AC(v).

Definition 5.14. Discussion of v (D[v]). The discussion of a vertex v in an ace graph G is the subgraph
of G, which contains exactly all distinct paths in G that end in v.

Example 5.15. Figure 2 shows the discussion of i(g4), i.e., D[i(g4)]. This discussion contains all distinct
paths from the ace graph in Figure 1 that end in i(g4).

The acceptability of a vertex v in an ace graph is evaluated by the analysis of the discussion of v, i.e.,
D[v]. To perform the evaluation of acceptability of a vertex v ∈ V (G) in an ace graph G, we must first
retrieve D[v] from a given G. Algorithm 1 retrieves retrieves a discussion of the given vertex.

Proposition 5.16. Algorithm 1 applied to a vertex v in an ace graph (i) does not loop indefinetly, (ii)
returns all direct and indirect vertices in favor of or against the starting vertex v (i.e., returns the discussion
of v, D[v]), and (iii) has the running time in O(|V (D[v])| + |L(D[v])|).
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Algorithm 1 Find Discussion

Require: A nonempty ace graph G, a starting vertex First ∈ V (G);
Ensure: A nonempty graph D[First], which is a subgraph of G;

1: procedure FindDiscussion(G, First)
2: Empty the queue Q; V (D[First])← ∅; L(D[First])← ∅
3: Add First to Q
4: while Q is not empty do

5: for each vertex v in Q do

6: Add v to V (D[First])
7: for each v′ ∈ V (G) s.t. ∃v′v ∈ L(G) do
8: if v′v /∈ L(D[First]) then
9: Add v′v to L(D[First])

10: end if

11: if v′ /∈ V (D[First]) then
12: Add v′ to V (D[First])
13: Add v′ to Q
14: end if

15: end for

16: Delete v from Q
17: end for

18: end while

19: end procedure

Proof. Cf., Appendix A.2.

Algorithm 1 is an adaptation of the usual breadth first search algorithm (e.g., [13]). When applied to
an ace graph G, Algorithm 1 enqueues the starting vertex First and visits it. It then enqueues all vertices
on lines incoming to the visited node, and dequeues the visited starting node. All vertices in the queue are
visited in the same manner and are added to the discussion D[First]. The discussion also receives all lines
from G connecting the vertices in that discussion.

Definition 5.17. Subdiscussion. D[v′] is a subdiscussion of D[v] if and only if V (D[v′]) ⊆ V (D[v]) and
L(D[v′]) ⊆ L(D[v]).

Proposition 5.18. If v′ ∈ D[v], then D[v′] is a subdiscussion of D[v].

Proof. We give a trivial proof by contradiction. A discussion D[v ∈ V (G)] contains, by Definition 5.14, all
distinct paths in G that end in v. Suppose that there is a vertex v′ ∈ V (D[v]) such that V (D[v′])∩V (D[v]) 6=
V (D[v′]). There is thus a vertex v′′ that is on a path that ends in v′, but there is no path from v′′ to v. This
is a contradiction: if there is a path from v′′ to v′, and a path from v′ to v, there there must be a path from
v′′ to v′.

Proposition 5.18 is a useful result, since retrievingD[v] also retrieves the discussions of all vertices in V (D[v]),
that is, all subdiscussions of D[v].

5.2 Evaluation

The acceptability of the vertex v is evaluated by traversing and computing the labels on vertices in the
discussion of v, D[v]. The computed label of a vertex is a secondary label, and is different from that assigned
by λV . The computed label indicates whether a vertex is acceptable. We first give an informal overview below,
of how a discussion is traversed and labels computed (§5.2.1), then provide the details of the acceptability
evaluation algorithm (§5.2.2).
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5.2.1 Overview of Evaluation

The computed label of any vertex in D[v] is either A for accepted, AD for accepted and dominated, or R for
rejected. We illustrate the computation of labels by simple examples first, then go on to label the discussion
D[i(g4)] obtained from the graph in Figure 1, and finally give an informal outline of the algorithm that
computes the labels of any discussion.

Consider an ace graph G′ with only a single vertex V (G′) = {v} and L(G′) = ∅, so that D[v] = G′.
Being alone in D[v], v is neither attacked nor dominated; we therefore say that v is acceptable, and label it
A, denoted Av. Consider now a graph G′′ with three vertices and two lines between them. To compute the
labels in G′′, we need to know the direction of the lines and the primary labels on the vertices:

• if G′′ is i1 −→ I(i1, i2) −→ i2, then all vertices are neither attacked nor dominated, and they all take
the label A, i.e., Ai1 −→ AI(i1, i2) −→ Ai2;

• if G′′ is i1 −→ C(i1, i2) −→ i2, then i2 is attacked; we see that i1 and C are not attacked, and conclude
that i2 is rejected: Ai1 −→ AC(i1, i2) −→ Ri2;

• if G′′ is i1 −→ P(i1, i2) −→ i2, then i2 is dominated. To be dominated alone is not enough for
rejection, so that i2 is accepted and dominated, that is Ai1 −→ AP(i1, i2) −→ ADi2.

These three cases illustrate the first important principle used in computing the labels of a discussion: the
label on a vertex v depends on the labels of all vertices v1, . . . , vn adjacent to v by lines v1v, v2v, . . . , vnv.
This alone is not enough, as we must know how the labels interact – consider the hypothetical discussion
D[i1] in Ex.15.

(Ex.15)

Ai4

��
Ai2 //

RI({i2, i3}, i1) //
Ri1

AC(i4, i3) //
Ri3

66mmmmmm

The inference I({i2, i3}, i1) uses two inputs, one accepted i2 and another i3, which is attacked by the
acccepted i4 (hence the rejection of i3). The inference itself cannot be accepted, since one of its inputs
is rejected. Given that the application of the inference rule is rejected, the conclusion of the inference, i1,
must be rejected as well. Ex.15 illustrates the choice that the label R has priority over A. We choose to be
cautious in computing the labels, meaning that R has priority over AD and A, and AD has priority over A.
In addition to this second principle employed in the computation of the labels, we have a third and final one,
illustrated via Ex.16.

(Ex.16)

Ai4

��
Ai2 //

AI(i2, i1) //
Ai1

AC1(i4, C2) //
RC2(i3, I)

66lllll

Ai3oo

Suppose that no computed labels are given in Ex.16. We see immediately that i4, i3 and i2 should be
accepted as they are not attacked, along with C1(i4, C2). C2(i3, I) must then be rejected, as it is attacked
via C1(i4, C2). Observe then that I(i2, i1) has two incoming lines, one from the accepted i2 and another
from the rejected conflict C2(i3, I). While it is true that R has priority over A, we conclude that I(i2, i1) is
accepted, because the rejected conflict is not an input to the inference I(i2, i1). We have noted earlier that
the meaning of a line in an ace graph is determined from the labels that λV assigns to the vertices connected
by the line. The conclusion that I(i2, i1) is accepted cannot be reached without determining the meaning of
each line ending in I(i2, i1). By reading these lines, we see that I(i2, i1) does not take the conflict C2(i3, I)
as its input, but that this conflict attacks I(i2, i1). If the conflict is accepted, I(i2, i1) should be rejected;
however, the conflict is rejected, so that I(i2, i1) is accepted. More generally, the third principle we use in
computing the label on a vertex v is that the meaning of each line that ends in v must be determined. This
leads us to define a number of deduction rules for labels, which account for the meaning of the relevant line.
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Figure 3: Stongly connected components in the discussion D[i(g4)] from Figure 1

To see how these rules are used, consider again the vertex I(i2, i1). Since it has lines incoming from two
different vertices, we use the following two label deduction rules :1

• from Ai −→ I(i, ·), conclude that the inference I(i, ·) should be acccepted (where Ai −→ I(i, ·)
means that the inference I(i, ·) uses the accepted i as its input and concludes something else, i.e., “·”);
and

• from RC(·, I) −→ I(·, ·), conclude that the inference I(·, ·) should be accepted (where RC(·, I) −→ I(·, ·)
means that the inference I(·, ·) is attacked by the rejected conflict C(·, I)).

The application of two rules, as above, gives us two labels, both A; it is thus clear that I(i2, i1) will bear
the label A. More generally, if v has n incoming lines v1v, v2v, . . . , vnv, then we will apply n rules, selected
depending on the label of each vi ∈ {v1, v2, . . . , vn}. This will result in n labels. The one label that we will
assign to v will be that of the n labels, which has the priority over others, according to the principle of how
the labels interact, and given above. E.g., if we have the set of n labels, in which there is at least one label R,
we will conclude Rv; if each label is A, then Av; if there are no R labels, but only A and AD labels, then ADv.
Seventy two label deduction rules cover all cases allowed by the meaning of the To line in any ace graph.
We provide their definitions later on (cf., §5.2.2).

We now ask if i(g4) is acceptable. The answer can be given once we compute the labels on the discussion
D[i(g4)]. We find the discussion D[i(g4)] via Algorithm 1 and then proceed as follows:

1. If there are preferences in the discussion that are transitive, the steps below are performed on the
transitive closure of these transitive preferences on the discussion of choice. Regardless of whether P1
is transitive, the transitive closure of P1 on D[i(g4)] is the same as D[i(g4)].

2. We now need to find a topological sort of the strongly connected components of the discussion D[i(g4)].
A discussion can contain cycles, which is why we must first identify the strongly connected components.2

Figure 3 shows the discussion D[i(g4)], where each strongly connected component is delimited by a
rectangle. The largest strongly connected component contains cycles, while the others contain no cycles.
Once we have a topological components, we need their topological sort. It is well known that contracting
each strongly connected component in a directed graph gives a directed acyclic graph, where each vertex
is a contracted strongly connected component. A topological sort of that directed acyclic graph is a

1As a notational convention, we write “·” for the parameter that is not important for the application of the given rule.
2As usual, a strongly connected component is a graph, in which there is a path from any vertex to any other vertex.
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linear ordering of its vertices, in which a vertex comes before all vertices, to which it has outcoming
lines. To see why we need a topological sort of the strongly connected components, consider the problem
of labeling IMP,1 (same applies to the problem of labeling IMP,2 and IMP,3): the label of IMP,1 depends
on the labels of i(p2) and i(p2)→ i(p1). Consequently, we must label i(p2) and i(p2)→ i(p1) before
we label IMP,1. In a topological sort, IMP,1 comes after both i(p2) and i(p2) → i(p1). A topological
sort therefore gives the order, in which the strongly connected components should be labeled.

3. Given a topological sort of the strongly connected components of the discussion D[i(g4)], we label all
elements in the sort that have no incoming lines. We consequently label as accepted the following
vertices: Ai(g1), Ai(p2), Ai(p3), Ai(p4), A(i(p2) → i(p1)), A(i(p3) → i(p1)), and A(i(p4) → i(p1)).
Once these are labeled, the next elements in the sort are the three applications of modus ponens and
IT . They are not attacked and their inputs are accepted, so that AIMP,1, AIMP,2, AIMP,3, and AIT .
Labeling i(p1) is more difficult and requires a different strategy. This is because i(p1) lies on at least
one simple cycle.3 To label a strongly connected component with cycles, we proceed as follows:

(a) The count, say C of simple cycles in the strongly connected component is computed. C = 3 in
the strongly connected component containing i(p1).

(b) We add an empty sequence of labels on each vertex in the strongly connected component, and add
the label A to the sequence of each vertex.

(c) We choose a vertex according to a specific heuristic (namely, we take the last added vertex in
the strongly conncted component, as discussed in detail later on – cf., §5.2.2) and call it the
First vertex. In D[i(g4)], P1 is that vertex. In doing so, we in fact merely hypothesize that
P1 is accepted. To understand intuitively what happens next, suppose that there are C walkers
stationed at P1. Each walker obeys the following: (i) it takes equal time to traverse a vertex; (ii) it
can only go forward (i.e., over lines that start in a vertex); and (iii) no two walkers will start from
First and return to First along the exact same path. In the strongly connected component with
i(p1), we place three walkers at the vertex P1 and send them along the lines outgoing from P1.
After the first step, two walkers will reach C2 and one will reach i(p1). Once they reach a vertex,
they compute the label on that vertex by using the label deduction rules we explained earlier.
The computed label is appended to the sequence of labels on the vertex. For 〈A〉C2, we append
the sequence of labels with A, and obtain 〈A,A〉C2. Since all three applications of modus ponens
are accepted and 〈A〉P1, we get 〈A,AD〉i(p1). After the second step, two walkers are at C1, and the
third is at i(p1), so that 〈A,A,R,R〉C1 and 〈A,AD,R〉i(p1). The fourth step results in 〈A,A〉i(g4). After
the fourth step, two walkers arrive simultaneously at the first vertex P1. However, the first vertex
obtains its second label (i.e., 〈A〉P1 becomes 〈A,A〉P1) only after the slowest walker, i.e., the one
traversing the longest path back to the first vertex, arrives at that vertex.4

The stopping criterion for the walkers is as follows. If the last two labels in the sequence of labels on
the first vertex are identical, the walkers are not sent to traverse the strongly connected component
any further. This is the case in the example, where 〈A,A〉P1. The last label in the sequence of labels on
any vertex is the label that indicates the acceptability of that vertex: if A, the vertex is acceptable, if
AD, the vertex is acceptable and dominated, if R, the vertex is not acceptable. In case the first two
labels in the sequence of the first vertex are not identical, the walkers will be sent out in the same way
as described above, until the first vertex has four labels. When the first vertex has four labels and its
last two labels are not identical, then the given discussion is inconclusive with regards to acceptability:
more vertices need to be added (i.e., the discussion should continue) before the discussion is evaluated
again.

The sequence of steps exemplified above is the informal outline of the algorithm that labels any discussion.
The algorithm, called EvaluateDiscussion is formally introduced and discussed below.

3As usual, a simple cycle is a cycle that passes once through all vertices except its starting vertex, which the cycle passes
twice (as the cycle starts and ends in that vertex).

4Observe that the number of labels in the sequence of labels of a vertex, in a strongly connected component with cycles,
equals 1 plus the number of times a walker traversed that vertex. This is valid for all vertices other than the First vertex.
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Figure 4: Result of evaluating the discussion D[i(g4)] for acceptability.

5.2.2 Definition of Evaluation

We now present the algorithm that was informally outlined above. We start by defining the three computed
labels and the rules governing their interaction.

Definition 5.19. C-label. A computed label, or c-label, on any vertex v in an ace graph G is either A for
accepted (equivalently, acceptable), AD for accepted and dominated (i.e., acceptable and dominated), or R for
rejected (i.e., not acceptable).

Remark 5.20. An A c-label on v indicates that v is acceptable, that is, AC(v) holds. If v carries the c-label
R, then AC(v) does not hold. The c-label AD gives two indications: one is that AC(v) holds, while the D

in AD says that there are acceptable vertices in G that are strictly more preferred to v.

The c-label of a vertex v ∈ V (G) is computed by taking into account the c-labels on vertices v1, v2, . . . , vn
such that ∃{v1v, v2v, . . . , vnv} ⊆ L(G). We call each of v1, v2, . . . , vn an in-adjacent vertex. The c-labels on
the various in-adjacent vertices can be different, so that it becomes necessary to know how to combine them
when computing the c-label on v. Consider the graph pattern below.

(Ex.17)

v1

##H
HH

H
v2

��

. . . vn

uujjjjjjjjj

v

Suppose that vertices v1 to vn−2 are all accepted, vn−1 is accepted and dominated, and vn is rejected. To
compute the c-label on v, we obviously need to know the labels assigned by λV to each vertex v, v1, . . . , vn.
E.g., if λV (v1) = C, then the c-label AD will be propagated from v1 to v. We therefore require the rules for
how c-labels are sent between vertices in an ace graphs, depending on the labels of vertices (i.e., i, I, C, and
P) and the direction of the To line between a given pair of vertices.

Remark 5.21. The rules for the propagation of c-labels across lines are used by the evaluation algorithm
when it traverses a vertex. Since the application of such rules will propagate as many c-labels on v as there
are in-adjacent vertices to v, we associate a set, called t-set to a vertex. Each member of a t-set if a c-label.
If v has n in-adjacent vertices, the t-set of v will receive n members each time the evaluation algorithm
traverses v. Because the evaluation algorithm mey traverse a vertex more than once, we also add a sequence
of c-labels, called c-sequence on each vertex in an ace graph. The evaluation algorithm appends a c-label
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to the c-sequence of a vertex, by inferring that c-label from the c-labels in the t-set of that vertex. Each
member of a c-sequence is a c-label. The use of both the t-set and the c-sequence of a vertex will be clarified
below. When it is relevant to make explicit the c-sequence of v, we write 〈...〉v. When it is relevant to make

the t-set of v explicit, we write {...}v.

Definition 5.22. propagateLabel Function. propagateLabel : V (G) × V (G) −→ {A,AD,R}. For a line
v′v ∈ L(G) in an ace graph, such that v′ has a c-label, the propagateLabel function returns a c-label for the
vertex v, based on λV (v

′) and the direction of the line from v′ to v. Table 2 completely defines the function
propagateLabels.

Remark 5.23. Table 2 has a similar structure as Table 1. For each case in Table 1, Table 2 studies three
cases, one per allowed label. E.g., for the case Is(·, ie) −→ ie (second column, first row in Table 1), Table
2 gives three rules: (i) if Is(·, ie) has the c-label A, then ie obtains the c-label A (rule 17 in Table 2); (ii)
if Is(·, ie) has the c-label AD, then ie obtains A (rule 18 in Table 2); and (iii) if Is(·, ie) carries R, then ie

obtains R (rule 19 in Table 2).

Example 5.24. In Figure 2:

• propagateLabel(Ai(g1), IT ) = A;

• propagateLabel(AIT , i(g4)) = A;

• propagateLabel(AC1, i(g4)) = R; and so on.

To compute the c-label on a vertex v, which has in-adjacent vertices v1, . . . , vn, we propagate a c-label
from each of v1, . . . , vn. We consequently end up with n c-labels in the t-set of v, so that it becomes necessary
to determine which of the n c-labels to infer from the t-set of v. We do so by applying the inference rules for
multiple labels.

Definition 5.25. Inference Rules for Multiple C-Labels. When there are n alternative c-labels for a
vertex v, then the c-vertex on v is determined by the application of the following rules:

1. Rejection R overrules acceptance A: from R and A, conclude R.

2. Rejection R overrules dominated acceptance AD: from R and AD, conclude R.

3. Dominated acceptance AD overrules acceptance A: from AD and A, conclude AD.

Example 5.26. In Figure 2, suppose that both IT and C1 carry the c-label A. To determine the c-label
on i(g4), we call the function propagateLabel on both vertices that are in-adjacent to i(g4). We thus have
propagateLabel(AIT , i(g4)) = A and propagateLabel(AC1, i(g4)) = R. We thus have {A,R}

i(g4). We follow the
first rule in Definition 5.25 and conclude that the c-label on i(g4) is R. We append the c-sequence of v with
the c-label inferred from the t-set (and empty the t-set), so that 〈...,R〉i(g4).

We combine the propagateLabel function (cf., Definition 5.22) and the inference rules for multiple labels in
Algorithm 2. The procedure ComputeLabel is called by the evaluation algorithm whenever that algorithm
visits a vertex in the discussion that is being labeled.

Algorithm 2 is given a vertex vi from a discussion D[v]. The algorithm first empties the t-set of vi (cf.,
Line 2 in Algorithm 2). The for each loop then considers all in-adjacent vertices of vi in the dicussion
D[v] (cf., Lines 3–9). For each considered vertex v′, the propagateLabel function is called: if its result is
an error, then the line v′vi is not one allowed by the meaning of the To link – the algorithm stops and
reports the error. If propagateLabels(v′, vi) returns a c-label instead of an error, that c-label is added to the
t-set of vi. The for each loop finishes after it has considered all vertices in D[v] that are in-adjacent to vi.
Let inDegree(vi, G) = |{v′ | ∃v′vi ∈ L(G)}|, so that inDegree(vi, D[v]) is the number of vertices in-adjacent
to vi in D[v]. Observe that the cardinality of the t-set of vi equals inDegree(vi, D[v]). Once the t-set has
inDegree(vi, D[v]) elements, Definition 5.25 is applied via the last if block (cf., Lines 10–16) to determine the
overruling c-label in the t-set.

Proposition 5.27. Algorithm 2 applied to a vertex vi in a discussion D[v] (i) does not loop indefinetly, (ii)
returns the overruling c-label among the c-labels propagated from all in-adjacent vertices to vi in D[v], and
(iii) has the running time in O(inDegree(vi, D[v])).
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Table 2: Complete definition of the propagateLabel function. To simplify the presentation below, the notation [〈...,A〉i, I(i, ·)] ⇒ [A] is an abbreviation of
propagateLabel(〈...,A〉i, I(i, ·)) = A, where A is the c-label added to the t-set of I(i, ·). As in Table 1, we write I(a, b) to indicate that a is used to infer b

by the application of I; P(a, b) indicates that a attacks b by the conflict rule application P; P(a, b) indicates that a is strictly better than b according to the
preference rule application P . An additional convention is that if we write propagateLabel(〈...,A〉i, I(i, ·)), then the labeled i is the parameter i in I(i, ·); if we
write propagateLabel(〈...,A〉i, I) then the labeled i is not a parameter in I (i.e., the parameters of I are some vertices other than the given information vertex i).

In any case other than (8)–
(79), getLabel returns error.

[〈...,A〉i, I(i, ·)] ⇒ [A] (7)

[〈...,AD〉i, I(i, ·)] ⇒ [A] (8)

[〈...,R〉i, I(i, ·)] ⇒ [R] (9)

[〈...,A〉i, C(i, ·)] ⇒ [A] (10)

[〈...,AD〉i, C(i, ·)] ⇒ [A] (11)

[〈...,R〉i, C(i, ·)] ⇒ [R] (12)

[〈...,A〉i, P(i, ·)] ⇒ [A] (13)

[〈...,AD〉i, P(i, ·)] ⇒ [A] (14)

[〈...,R〉i, P(i, ·)] ⇒ [R] (15)

[〈...,A〉I(·, i), i] ⇒ [A] (16)

[〈...,AD〉I(·, i), i] ⇒ [A] (17)

[〈...,R〉I(·, i), i] ⇒ [R] (18)

[〈...,A〉I(·, I
′), I′] ⇒ [A] (19)

[〈...,A〉I, I
′(I, ·)] ⇒ [A] (20)

[〈...,AD〉I(·, I
′), I′] ⇒ [A] (21)

[〈...,AD〉I, I
′(I, ·)] ⇒ [A] (22)

[〈...,R〉I(·, I
′), I′] ⇒ [R] (23)

[〈...,R〉I, I
′(I, ·)] ⇒ [R] (24)

[〈...,A〉I(·, C), C] ⇒ [A] (25)

[〈...,A〉I, C(I, ·)] ⇒ [A] (26)

[〈...,AD〉I(·, C), C] ⇒ [A] (27)

[〈...,AD〉I, C(I, ·)] ⇒ [A] (28)

[〈...,R〉I(·, C), C] ⇒ [R] (29)

[〈...,R〉I, C(I, ·)] ⇒ [R] (30)

[〈...,A〉I(·, P), P] ⇒ [A] (31)

[〈...,A〉I, P(I, ·)] ⇒ [A] (32)

[〈...,AD〉I(·, P), P] ⇒ [A] (33)

[〈...,AD〉I, P(I, ·)] ⇒ [A] (34)

[〈...,R〉I(·, P), P] ⇒ [R] (35)

[〈...,R〉I, P(I, ·)] ⇒ [R] (36)

[〈...,A〉C(·, i), i] ⇒ [R] (37)

[〈...,AD〉C(·, i), i] ⇒ [R] (38)

[〈...,R〉C(·, i), i] ⇒ [A] (39)

[〈...,A〉C(·, I), I] ⇒ [R] (40)

[〈...,A〉C, I(C, ·)] ⇒ [A] (41)

[〈...,AD〉C(·, I), I] ⇒ [R] (42)

[〈...,AD〉C, I(C, ·)] ⇒ [A] (43)

[〈...,R〉C(·, I), I] ⇒ [A] (44)

[〈...,R〉C, I(C, ·)] ⇒ [R] (45)

[〈...,A〉C(·, C
′), C′] ⇒ [R] (46)

[〈...,A〉C, C
′(C, ·)] ⇒ [A] (47)

[〈...,AD〉C(·, C
′), C′] ⇒ [R] (48)

[〈...,AD〉C, C
′(C, ·)] ⇒ [A] (49)

[〈...,R〉C(·, C
′), C′] ⇒ [A] (50)

[〈...,R〉C, C
′(C, ·)] ⇒ [R] (51)

[〈...,A〉C(·, P), P] ⇒ [R] (52)

[〈...,A〉C, P(C, ·)] ⇒ [A] (53)

[〈...,AD〉C(·, P), P] ⇒ [R] (54)

[〈...,AD〉C, P(C, ·)] ⇒ [A] (55)

[〈...,R〉C(·, P), P] ⇒ [A] (56)

[〈...,R〉C, P(C, ·)] ⇒ [R] (57)

[〈...,A〉P(·, i), i] ⇒ [AD] (58)

[〈...,AD〉P(·, i), i] ⇒ [AD] (59)

[〈...,R〉P(·, i), i] ⇒ [A] (60)

[〈...,A〉P(·, I), I] ⇒ [AD] (61)

[〈...,A〉P, I(P, ·)] ⇒ [A] (62)

[〈...,AD〉P(·, I), I] ⇒ [AD] (63)

[〈...,AD〉P, I(P, ·)] ⇒ [A] (64)

[〈...,R〉P(·, I), I] ⇒ [A] (65)

[〈...,R〉P, I(P, ·)] ⇒ [R] (66)

[〈...,A〉P(·, C), C] ⇒ [AD] (67)

[〈...,A〉P, C(P, ·)] ⇒ [A] (68)

[〈...,AD〉P(·, C), C] ⇒ [AD] (69)

[〈...,AD〉P, C(P, ·)] ⇒ [A] (70)

[〈...,R〉P(·, C), C] ⇒ [A] (71)

[〈...,R〉P, C(P, ·)] ⇒ [R] (72)

[〈...,A〉P(·, P
′), P′] ⇒ [AD] (73)

[〈...,A〉P, P
′(P, ·)] ⇒ [A] (74)

[〈...,AD〉P(·, P
′), P′] ⇒ [AD] (75)

[〈...,AD〉P, P
′(P, ·)] ⇒ [A] (76)

[〈...,R〉P(·, P
′), P′] ⇒ [A] (77)

[〈...,R〉P, P
′(P, ·)] ⇒ [R] (78)

1
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Algorithm 2 Compute a C-Label

Require: A discussion D[v] and a vertex vi ∈ V (D[v]);
Ensure: A c-label for vi;

1: procedure ComputeLabel(vi, D[v])
Initialize:

2: Empty the t-set of vi
Fill the t-set of vi:

3: for each ∃v′vi ∈ L(D[v]) do
Apply Definition 5.22 to propagate a c-label to vi from the vertex v′:

4: if propagateLabel(v′, vi) is not an error then
5: Add the result of propagateLabel(v′, vi) to the t-set of vi
6: else

7: Stop and return error: disallowed graph structure encountered.
8: end if

9: end for

Apply Definition 5.25 to infer the overruling label in the t-set of vi:
10: if there is at least one R in the t-set of vi then
11: Stop and return R.
12: else if there is at least one AD in the t-set of vi then
13: Stop and return AD.
14: else

15: Stop and return A.
16: end if

17: end procedure

Proof. Trivial; cf., Appendix A.3.

The ComputeLabel procedure is called within the evaluation algorithm, of which an informal outline
was given earlier (cf., §5.2.1). Three steps were identified: (1) the algorithm builds the transitive closure
of the transitive preference rules, the applications of which appear in the discussion being evaluated; (2)
the algorithm builds a topological sort of the strongly connected components of the transitive closure of the
discussion; and (3) the algorithm labels the strongly connected components, in the order of their topological
sort. These three steps are performed in the given sequence by Algorithm 3, called EvaluateDiscussion.
Given a discussion D[v], EvaluateDiscussion will compute, if they exist, stable c-labels on each vertex in
the discussion. Errors will be returned if the c-labels are not stable, or if the algorithm encounters a line that
violates the meaning of lines in an ace graph, as established in Definition 4.20.

Definition 5.28. Stable C-Label. The mth c-label in the c-sequence of a vertex v is a stable label for that
vertex if and only if for any integer i > 0, any (m + i)th c-label, computed at the (m + i)th traversal of v,
equals the mth c-label in the c-sequence of v.

If the algorithm finds stable c-labels, we can immediately answer the question of whether each vertex in
the discussion is acceptable. If EvaluateDiscussion returns an error, then the discussion must be revised:
new vertices may need to be added if stable labels are absent, while all lines violating the meaning of the
lines in an ace graphs should be removed.

Proposition 5.29. Agorithm 3 applied to a discusssion D[v] (i) does not loop indefinetly, (ii) returns
stable c-labels for all vertices in D[v] if they exist, an error otherwise, and (iii) has the running time in
O(C(Dc[v])(|L(Dc[v])|+ 2|V (Dc[v])|)), where C(Dc[v]) is the number of simple cycles in Dc[v] and Dc[v] is
the transitive closure of the transitive preference rules in D[v] on D[v].

Proof. Cf., Appendix A.5.

EvaluateDiscussion applied to D[v] starts by building the transitive closure on transitive preference
rule applications in D[v] to obtain Dc[v]. PT is a set of sets; each element in PT is a set of preference
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rule applications that are transitive. Figure 5(a) gives a hypothetical discussion D[i1], where C1,1, C1,2,
and C1,3 are assumed to be three applications of the same transitive preference rule C1. Figure 5(b) shows
the discussion Dc[i1], obtained by computing the transitive closure of C1 on the discussion D[i1]. Dc[i1]
is the result of BuildTransitiveClosure(D[i1], P

T ), where PT has only one element, which is the set
{P1,1, P1,2, P1,3}. The procedure BuildTransitiveClosure is described in detail in Appendix A.4.

i1 // C2 // i2

��
P1,3

OO

P1,1

��
i4

OO

P1,2oo i3oo

(a)

i1 // C2 // i2

��
P1,3

OO

P1,1

��

iiSSSSSSSSSSSS

uullllllllllll

i4

OO

P1,2oo

YY3
3
3
3
3
3
3
3
3
3

i3oo

(b)

Figure 5: Figure 5(a) shows a hypothetical discussion, in which all preference rule applications are different appli-
cations P1,1, P1,2, P1,3 of the same comparison rule P1 and P1 is assumed to be transitive. Figure 5(b) shows the same
discussion complex smallest justification updated for the transitive closure of P1 on the discussion in Figure 5(a).

The next step (cf., Line 4 in Algorithm 3) is to find all strongly connected compontens in Dc[v]. Dc[i1] in
Figure 5 has a single strongly connected component, while Dc[i(g4)] in Figure 2 has twelve strongly connected
components, as illustrated in Figure 3. We do not discuss the detail of EnumerateSCC, as it amounts to
Tarjan’s strongly connected components algorithm [19], or an improved variant thereof (cf., e.g., [18]).

The strongly connected components of a Dc[v] returned by EnumerateSCC(Dc[v]) are recorded in the
set C. Each element ci ∈ C is a strongly connected component of Dc[v], and thereby a subgraph of Dc[v]. The
c-labels are computed by traversing each strongly connected component separately. Since the labels on the
vertices V (ci) in a strongly connected component ci may depend on the labels on vertices V (cj) of another
strongly connected component cj , an order must be established, in which the strongly connected comoponents
should be traversed to compute c-labels on their vertices. It is well-known that if we contract each strongly
connected component in a directed graph down to a single vertex, the result is a directed acyclic graph. The
procedure ContractSCC takes a Dc[v] and the set of its strongly connected components, and returns a
directed acyclic graph DC . Each vertex wi ∈ V (VC) represents exactly one strongly connected component
in C. ContractSCC starts by adding as many vertices wi to V (DC) as there are strongly connected
components in C. The first for each loop then considers each strongly connected component ci ∈ C, and
defines the function standsFor : V (DC) −→ C. The standsFor function associates to each wi ∈ V (DC) a
strongly connected component ci ∈ C that wi represents; one can understand a vertex wi as being the result of
shrinking ci down to a single vertex. We shall say that the function standsFor returns the strongly connected
component in C that is represented by a given vertex in DC . After the current ci is associated to a wi in Line
13, the for each loop in Lines 15–23 considers for each wi ∈ V (DC), all other wj 6= wi in order to check if
there is a line in Dc[v] from a vertex in V (standsFor(wi)) (i.e., V (ci)) to a vertex in V (standsFor(wj)) (i.e.,
cj). If such a line exists, a line between wi and wj is added to L(DC). ContractSCC thereby returns a
graph, in which each vertex stands for exactly one strongly connected component of Dc[v], and in which any
two distinct vertices wi and wj are connected by a line wiwj if and only if there is a line from a vertex in
V (standsFor(wi)) to a vertex in V (standsFor(wj)).

Given a directed acyclic graph DC and the function standsFor, both from ContractSCC(Dc[v], C), we
can determine the order, in which to traverse the strongly connected components of Dc[v]. A topological
order of the vertices in DC is a sequence of vertices, in which (i) the vertices without incoming lines occupy
the first places, (ii) vertices in-adjacent to any of the first vertices (i) occupy the next places, (iii) vertices
in-adjacent to the vertices on second places (ii) are next, and so on; the last vertices in the sequence have no
outoing lines. TopologicalSort(DC) returns SC , which is a topological sort of the vertices in V (DC). As
the elements in SC are the vertices of DC , the procedure ExpandSCC is called on SC in order to obtain a
topological sort of the strongly connected components of Dc[v]. ExpandSCC will first set S to equate SC ,
then replace each element wi of S with the result of standsFor(wi). Each element wi will thereby be replaced
with the strongly connected component ci, which standsFor relates to ci. As soon as we have a topological
sort S of the strongly connected components of D[v], the traversal of the strongly connected compontents
can be performed and c-labels computed on the vertices therein.
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Algorithm 3 Evaluate a Discussion

Require: A discussion D[v];
Ensure: If there are stable c-labels for all vertices in D[v], then a function Λ : V (D[v]) −→ {A,AD,R},

which returns the stable c-label for each vertex in D[v]; if there are no stable labels, then an error;

1: procedure EvaluateDiscussion(D[v], PT )
Initialize:

2: Empty Dc[v], C, DC , SC , and S
Build the transitive closure of the transitive preference rules applied in D[v]:

3: Dc[v]← BuildTransitiveClosure(D[v], PT )
Find all strongly connected compontents of Dc[v] and obtain their topological sort:

4: C ← EnumerateSCC(Dc[v]) ⊲ C is the set of all strongly connected components of Dc[v].
5: DC ← ContractSSC(Dc[v], C)
6: SC ← TopologicalSort(DC)
7: S ← ExpandSCC(SC) ⊲ An element of S is a strongly connected component from C.

Label all strongly connected components from the first to the last in their topological sort:
8: Λ← LabelSCC(Dc[v],S)
9: end procedure

Obtain a directed acyclic graph DC by contracting the strongly connected components in Dc[v]:
10: procedure ContractSCC(Dc[v], C)
11: V (DC)← {w1, w2, . . . , w|C|} ⊲ w1, . . . , w|C| are vertices of DC .
12: for each ci ∈ C do ⊲ ci is a strongly connected component of Dc[v].
13: standsFor(wi)← ci
14: end for

15: for each wi ∈ V (DC) do
16: for each wj ∈ V (DC) s.t. wi 6= wj do

17: for each v ∈ V (standsFor(wi)) do
18: if ∃v′v ∈ L(Dc[v]) s.t. v′ ∈ V (standsFor(wj)) then
19: Add the line from wj to wi to L(DC)
20: end if

21: end for

22: end for

23: end for

24: end procedure

Obtain a topological sort S of the strongly connected components of Dc[v]:
25: procedure ExpandSCC(SC)
26: S ← SC
27: for each wi in S do

28: Replace wi with the result of standsFor(wi)
29: end for

30: end procedure
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Algorithm 4 Label Strongly Connected Components

Require: Dc[v] and S, a topological sort of the strongly connected components of Dc[v];
Ensure: If there are stable c-labels for all vertices in D[v], then a function Λ : V (D[v]) −→ {A,AD,R},

which returns the stable c-label for each vertex in D[v]; if there are no stable labels, then an error;

1: procedure LabelSCC(Dc[v],S)
Initialization:

2: Add an empty c-sequence and an empty t-set on each vertex in V (Dc[v])
3: Let i in ci be the position of the strongly connected component c in S, i.e., i ≡ position(c,S)
4: i← 1

Label each strongly connected component of Dc[v]:
5: while i ≤ length(S) do
6: if |V (ci)| = 1 then

7: if 6 ∃v′′v′ ∈ L(Dc[v]) s.t. v′ ∈ V (ci), v′′ ∈
⋃i−1

j=1 V (cj) then
8: Append the c-sequence of the only vertex v′ ∈ V (ci) with the label A
9: else

10: ComputeLabel(v′ ∈ V (ci), D
c[v])

11: end if

12: else

13: Let v′ be the newest vertex in V (ci)
14: LabelComplexSCC(ci, v

′)
15: end if

16: i← i+ 1
17: end while

Define the function Λ : V (D[v]) −→ {A,AD,R}
18: for each vertex v′ ∈ V (Dc[v]) do
19: Λ(v′)← (the last c-label in the c-sequence of v)
20: end for

21: Stop and return message: Stable labels found.
22: end procedure

To label the vertices in the strongly connected components of Dc[v], Algorithm 3 calls the procedure
LabelSCC on Dc[v] and a topological sort S of the strongly connected components of Dc[v]. Detail of the
LabelSCC is given in Algorithm 4.

LabelSCC(Dc[v],S) initializes by adding an empty t-set and an empty c-sequence to each vertex of
V Dc[v]. As discussed earlier in relation to the procedure ComputeLabel in Algorithm 2, the t-sets and
c-sequences are needed to compute c-labels at each traversal of a vertex. We then introduce the function
position, which returns the positive integer denoting the position of a strongly connected component c in
the topological sort S of the strongly connected components. i in ci abbreviates position(c,S). Initialization
ends by setting i = 1, so that the while loop moves from the first c in S. At each iteration, the while loop
considers the strongly connected component c at the ith position in S, i.e., ci. The while loop stops after it
has processed the last element in the sequence S. length(S) is the number of elements in S. For a given ci,
the outer if block in the while loop checks if the ci has one or more vertices:

• If ci has a single vertex, i.e., |V (ci)| = 1, then we must determine whether that vertex has incoming
lines in Dc[v]:

– If the only vertex in ci has no incoming lines, there are no vertices in Dc[v], which are relevant to
its acceptability (cf., Definition 5.1 and Proposition 5.9) and that vertex can be given the c-label
A;

– If the only vertex in ci has incoming lines, then there are vertices that are relevant to its accept-
ability. We therefore call the procedure ComputeLabel on that vertex and the graph Dc[v];
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Figure 6: Figure 6(a) shows a strongly connected component, say c1 from the transitive closure Dc[v] of some
discussion D[v]. Figure 6(b) shows the stable c-labels obtained by calling LabelComplexSCC(c1, C1). Figure 6(b)
shows the stable c-labels obtained by calling LabelComplexSCC(c1, i2). We assume for simplicity that no vertex
in c1 has an incoming line in Dc[v] that is not in c1. Observe from Figures 6(b) and 6(c) that the strongly connected
component c1 has no unique stable labels. Figure 6(d) shows the unique stable labels on the strongly connected
component from Figure 5(b).

• If ci has more than one vertex, then each vertex in ci is on at least one cycle. To label the vertices
on cycles, one of the vertices must be chosen as a starting vertex. The problem with this choice is
that an absolute criterion for choosing a starting vertex is abesent. To see why, consider the strongly
connected component in Figure 6(a). We observe that calling LabelComplexSCC on two different
vertices gives different stable labels. This same problem arises when LabelComplexSCC is called on
the largest strongly connected component in Figure 3, once on the vertex P1, and in another call on C1.
In other words, we can obtain stable labels, but there are patterns of strongly connected components,
in which the choice of the starting vertex for the labeling procedure influences the stable labels that are
obtained. Not all complex (i.e., |V (c)| > 1) strongly connected components suffer from this problem:
an example is the strongly connected component shown in Figure 5(b). If we assume that none of its
vertices has incoming lines other than those shown in Figure 5(b), then unique stable labels exist for
all of its vertices: whatever the chosen starting vertex for the labeling procedure, the stable labels will
always be identical for each of its vertices. We discuss the uniqueness of stable c-labels in detail below.

If no errors are reported, the while loop will terminate after all strongly connected components in S have
been traversed, and all vertices therein assigned stable c-labels. We then proceed to define the Λ function
via the last for each loop. Each vertex v′ ∈ Dc[v] is considered, and Λ(v′) is given the last c-label of the
c-sequence of v′.

We have noted above that stable labels may not be unique. We now consider this problem in more detail.

Definition 5.30. Unique Stable C-Label. Let c be a strongly connected component of the transitive
closure of a discussion, and such that |V (c)| > 1. A stable c-label on a vertex v ∈ V (c) is unique if and
only if LabelComplexSCC always assigns the same stable c-label on v, regardless on which vertex in c it
is called.

Suppose that there are in fact stable c-labels in a given strongly connected component c and that there are
no lines in c that violate the line meaning (cf., §4.2), so that LabelComplexSCC will not return an error.
We then see four strategies to attack the question of whether the returned stable c-labels of the vertices in c
are unique:

1. Acyclical discussion. If there are no cycles in the transitive closure Dc[v] of a discussion D[v], the
problem of uniqueness of stable c-labels disappears. The absence of cycles in Dc[v] makes each vertex
of Dc[v] a strongly connected component, so that the if condition in Line 6 of LabelSCC will verify
for each vertex in Dc[v] and LabelComplexSCC will not be called at all. There are two principal
shortcomings of imposing acyclical discussions. Part of the expressive power would be eliminated, as
various intuitively valid structures, such as the one in our earlier example (cf., §4.1), cannot be captured.
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The other difficulty is that constraints must be placed on the process of building a discussion, if cycles
are to be avoided at discussion-time.

2. Brute force uniqueness check. The brute force uniqueness check would amount to call, for a given c,
LabelComplexSCC on each of the vertices in c. In case the stable labels are not unique, the part of
the discussion that the given strongly connected component captures should be revisited; after changes
are made, EvaluateDiscussion would be run again. The proof of Proposition 5.29 points out that the
running time of LabelComplexSCC on a strongly connected component c is O((|V (c)|+|L(c)|)(C(c)+
1)+C(c)|V (c)|), where C(c) is the number of simple cycles in c. The part O((|V (c)|+ |L(c)|)(C(c)+1))
is due to the computation of the number of simple cycles in c, so that it need be executed only once in
the brute force uniqueness check. It is then apparent that the brute force uniqueness check will increase
the complexity from O((|V (c)| + |L(c)|)(C(c) + 1) + C(c)|V (c)|) to O((|V (c)| + |L(c)|)(C(c) + 1) +
C(c)(|V (c)|)2). The principal disadvantage in the brute force approach is the increase in complexity.

3. Uniqueness check by random sample. Instead of running LabelComplexSCC on each vertex in ci and
comparing results, a random sample of the vertices could be chosen, and LabelComplexSCC would
be called on each of the vertices in the sample. If LabelComplexSCC returns the same c-labels in each
call on a vertex from the sample, the probability of these labels being the unique ones can be computed.
Instead then of being certain that the c-labels are unique (as in the brute force approach), the computed
probability would give a level of confidence in the c-labels being unique. If X is the sample of vertices,
and S ⊆ V (c), then the complexity of this approach is O((|V (c)|+ |L(c)|)(C(c) + 1) + C(c)|X ||V (c)|).

4. Choose the first vertex via a heuristic. The idea here is to offer a heuristic for choosing the starting
vertex in c, on which to call LabelComplexSCC. One possible heuristic comes from the saying “The
one who has the last word laughs best.” In other words, the starting vertex for labeling could be the
last vertex among those in a given strongly connected component. In Figure 6(a), if C1(i1, i2) was the
last vertex added among the four vertices in that figure, then LabelComplexSCC(c1, C1) is called
and the resulting c-labels are given in Figure 6(a). This heuristic is meaningful in the example used
throughout the paper (cf., §4.1): P1 and C2 were added last to the part of the graph, which encompasses
the largest strongly connected component of D[i(g4)]. Calling LabelComplexSCC on either P1 or
C2 gives the same stable labels. If LabelComplexSCC is called on a vertex older than P1 or C2,
different c-labels will be obtained. We adopt this heuristic at present and include in the evaluation
algorithm. As Dung [6] observes, the saying “he who has the last word laughs best” illustrates a
very simple principle, on which people seem to often base the exchange of arguments. Given that
LabelComplexSCC is called only once in this strategy, LabelComplexSCC will have the running
time in O((|V (c)|+ |L(c)|)(C(c) + 1) + C(c)|V (c)|).

Observe that the first strategy is the simplest, while the second is the most complex. The third strategy
is between the fourht and the second in terms of complexity. We use the heuristic given above in order to
choose the newest vertex in the strongly connected component. This is reflected in Line 13 of LabelSCC, in
Algorithm 4, where the newest vertex is chosen among the vertices of a given strongly connected component,
and is input to LabelComplexSCC. It is clear that other relevant heuristics may be found, but we leave
such discussions for future work.

LabelComplexSCC is defined in Algorithm 5. LabelSCC calls LabelComplexSCC on each strongly
connected component c having more than one vertex. In addition to c, LabelComplexSCC is supplied
with the vertex of c, say v, from which to traverse c. We gave earlier (cf., §5.2.1) an informal outline of how
c is traversed from v in order to compute the c-labels on vertices in c. We now discuss LabelComplexSCC

in more detail via an example.
The initialization of LabelComplexSCC starts by counting the simple cycles in c, which is stored in

C(c). The queue Q is emptied, and the starting vertex v is added to Q. Q will carry the vertices that the
outer for each loop in the while loop will traverse. All vertices are assumed acceptable at the outset, so
that the c-label A is added to the c-sequence of the each vertex in c. The c-label A is taken as the initial
hypothetical label because it is the weakest of the three labels (cf., Definition 5.25). Two counters p and q
are initialized. The starting vertex v is called First. To see how LabelComplexSCC traverses c, observe
first that the number of cycles C(c) gives the upper bound on the number of simple paths from any vertex
to any other vertex in c. Assume then that we have a C(c) number of walkers for the given c. Recall from a
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Algorithm 5 Label a Complex Strongly Connected Component

Require: A strongly connected component c of the transitive closure Dc[vi], s.t., |V (c)| > 1, and a vertex
v ∈ V (c);

Ensure: If there are stable c-labels for all vertices in c, then at least two c-labels in the c-sequence of each
vertex in V (J [v]); an error otherwise;

1: procedure LabelComplexSCC(c, v)
Initialization:

2: C(c)← CountSimpleCycles(c) ⊲ C(c) is the number of simple cycles in c.
3: Empty Q
4: Add v to Q
5: Add the c-label A to the c-sequence of each vertex in c
6: Call First the vertex v in Q
7: q ← 0
8: p← 1 ⊲ p counts the number of c-labels in the c-sequence of First.

Traversal:
9: while Q is not empty do

10: for each vertex v in Q do

11: Delete v from the queue Q
12: for each v′ ∈ V (c) s.t. ∃vv′ ∈ L(c) do
13: if the result of ComputeLabel(v′, Dc[vi]) is not an error then
14: if v′ 6= First then
15: Append the c-sequence of v′ with the result of ComputeLabel(v′, Dc[vi])
16: else

17: if q < C(c) then
18: q ← q + 1
19: else if q = C(c) then
20: Empty Q
21: Append the c-sequence of v′ with the result of ComputeLabel(v′, Dc[vi])
22: q ← 0
23: p← p+ 1
24: end if

25: end if

26: Add v′ to Q
27: if the last two labels in the c-sequence of First are identical then
28: Empty Q and return message: Stable labels found.
29: For each vertex in V (c), keep only the last label in its c-sequence, delete others.
30: else if p = 4 then

31: Empty Q and return error: c has unstable labels.
32: end if

33: else

34: Empty Q and return error: Disallowed graph structure encountered.
35: end if

36: end for

37: end for

38: end while

39: end procedure
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discussion above (cf., §5.2.1) that tach walker obeys the following rules: (i) it takes equal time to traverse a
vertex; (ii) it can only go forward (i.e., over lines that start in a vertex); and (iii) no two walkers will start
from First and return to First along the exact same path.

Consider now again the strongly connected component c in Figure 5(b) having four simple cycles, i.e.,
C(c) = 4. We shall assume for simplicity the following: (i) c is a strongly connected component in the
transitive closure Dc[vi], of some given discussion D[vi]; and (ii) none of the vertices in c has an incoming
line in Dc[vi] that is not in c. Let C2 be the newest vertex in c, and is therefore called First and added to the
queue Q. With C2 in Q, LabelComplexSCC enters the while loop. The outer for each loop will delete
First from Q, while the inner for each loop will consider each line that starts in C2. We put all four walkers
on C2 and move them along the line C2i2 to i2. Since i2 6= C2, the if condition in Line 14, in the inner for
each loop verifies and ComputeLabel(i2, D

c[vi]) is called. The c-sequence of i2 thus becomes 〈A,R〉 and
i2 is added to Q and the walkers are at i2. The while loop then processes i2: the walkers move along the
line i2P1,1 to P1,1, and the c-sequence of P1,1 becomes 〈A,R〉 and Q contains only P1,1. Because there are
three lines starting in P1,1 and none of the vertices on which these lines end is First, the inner for each loop
will be adding three vertices to Q.

We consequently send the walkers along three different lines that start in P1,1: walker A will move to i1,
B to i4, and the other two, C and D to i3. It is important to observe here that the walker A will reach the
vertex First in the least number of steps, while one of the walkers C or D will reach First in the most steps.
Suppose that D is the last to arrive to First. We can now explain the role of the counter q. When A arrives
to First, it will apply the ComputeLabel procedure, which will return a c-label based on the last c-label
in the c-sequence of i1, which in turn was computed from the last c-label in the c-sequences of vertices P1,1,
P1,2 and P1,3. At the time when A computes the label on C2, the walker C will be computing the label on
P1,2. Moreover, it is only after A has appended the c-sequence of C2 that D will be computing the label
on P1,3. If D adds a label to P1,3 that is different from the label that A had on P1,3, D will may end up
computing a different label on C2 from the label that A computed. The point is that it is not appropriate to
let A append the c-sequence of First before the last walker returns to First, because the labels computed by
the walkers before D do not account for all of the information in c. It is only after the last walker arrives to
First that we know that all vertices of c were traversed. The else block in Lines 16–25 in Algorithm 5 verifies
when a walker arrives at First, and it is only when the last walker has arrived that the c-sequence of First is
appended with a label. Observe thus that q counts the number of walkers arriving at First, while p counts
the number of c-labels in the c-sequence of First. Figure 7 shows the result of applying LabelComplexSCC

to c in Figure 5(b).
It is on the basis of patterns of c-labels in the c-sequence of First that LabelComplexSCC detects the

presence or absence of stable c-labels in a complex strongly connected component. When no stable c-labels
can be found, no pair of same c-labels will be identified in the four first c-labels of the c-sequence of First.
Otherwise, stable labels are present and the algorithm will return a stable label for each vertex. The proof
of Proposition 5.29 discusses in detail the case of unstable labels. Figure 8(a) gives an example of a complex
smallest justification that has no stable c-labels, while Figure 8(b) illustrates a partial result of the application
of LabelComplexSCC to the strongly connected component in Figure 8(a).

6 Acceptability Condition Revisited

We wrote in Equation 2 above (cf., §3) that AC(ID, T (ID), OD) holds if and only if ∀p ∈ In(ID)∪ In(OD)∪
In(T (ID)), AC(p). After we have introduced the EvaluateDiscussion procedure (cf., §5.2.2 and Algorithm
3), we can provide the revision of the preliminary definition of the acceptability condition (cf., Definition
3.1).

Definition 6.1. AC (revised). The application of the re method T to the input ID to produce the output
OD is acceptable, denoted AC(ID, T (ID), OD) if and only if:

∀p ∈ In(ID) ∪ In(OD) ∪ In(T (ID)), AC(p) (79)

where:
AC(p) iff Λ(λV (p)) ∈ {A,AD} (80)
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Figure 7: Traversal of complex strongly connected component in Figure 5(b) by the procedure LabelComplexSCC

in Algorithm 5. The graph in Figure 5(b) has four simple cycles (i.e., C(c) = 4). The content of the queue Q is given
on the right hand side of the figure above. Stable c-labels are found in this example. The stable label for any given
vertex is the last label in the sequence of labels for that vertex.

Remark 6.2. The definition above simply indicates that the stable c-label on the vertex λV (p) that represents
the proposition p, should either be A or AD. Λ(λV (p)) returns that stable c-label, if it exists. Recall
from Algorithm 4 that the function Λ is defined by calling EvaluateDiscussion on a discussion. We will
therefore need to apply EvaluateDiscussion on all discussions that together have vertices representing
all propositions in In(ID) ∪ In(OD) ∪ In(T (ID)). The relationship between subdiscussions and discussions,
highligthed in Proposition 5.17, means that we will not necessarily need to apply EvaluateDiscussion to
the discussion of each vertex representing a proposition in In(ID)∪ In(OD)∪ In(T (ID)), as some vertices may
be within discussions of other vertices.

7 Notes on Implementation

The implementation of ace graphs and of the associated retrieval and evaluation algorithms is not available
at the time of writing. The implementation in progress is based on the adaptation of standard open source
internet forum software. This choice is based on two observations: (i) internet forums are popular means for
discussion, and are a well known kind of software, having evolved from bulletin board systems of the early
1970s; and (ii) a discussion in ace amounts to a forum discussion performed according to a set of simple
rules. By default, a discussion in an internet forum contains a collection of untyped posts. Any post may be
a response to the original post (i.e., the root post), or a response to a later post. A forum discussion thus
typically resembles an unlabeled tree, where each post is a vertex. To obtain an ace discussion instead of a
standard forum discussion, the following rules must be followed by the participants:

1. Any post is either an information, inference, conflict, or preference post.

2. Any post that is not the first post in a discussion, must be related to another post according to the
meaning of the To relationship.

Compared to a classical forum, an ace forum is thus one where a user chooses the label for a new post,
and relates that post to others. The first rule above ensures that we have the label for any post, while the
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Figure 8: Figure 8(b) shows part of the traversal of the complex smallest justification in Figure 8(a) by the procedure
LabelComplexSCC in Algorithm 5. Only part of the traversal is shown as the rest of it can be straightforwardly
reconstructed by the reader. The graph in Figure 8(a) has two simple cycles (i.e., C(c) = 2). The content of the
queue Q is given on the right hand side in Figure 8(b). The strongly connected component c in Figure 8(a) has no
stable labels.
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second rule guarantees that no post is disconnected from the others. A discussion in an ace forum can thus be
interpreted as an ace graph (or ace discussion), on which we can perform retrieval and evaluation operations
via the algorithms discussed earlier. The evaluation algorithm provides to participants the indication on the
acceptability of each post, so that they can, in case of rejection, intervene and respond in defense of their
claims.

8 Discussion and Related Work

This work is the continuation of our efforts to advance the analysis of decision making in requirements
engineering. At the 2006 edition of this conference, we discussed the problem of the acceptability of goal
models [11] via their justification. We argued at the time that modeling choices – e.g., the inclusion or
exclusion of some information about the system-to-be and its environment – should be justified for a goal
model to be acceptable. A manual procedure for justifying and evaluating justifications was offered. The
concept and procedure borrowed from the contributions on the analysis of arguments in artificial intelligence.
A justification amounted to a tree, where any vertex can either support or attack other vertices. That
work was subsequently extended [12] to analyze the clarity of information offered when justifying modeling
choices; these manual techniques can identify the use of unclear information, by detecting, e.g., ambiguity
and vagueness. This work was subsequently applied to the analysis of the acceptability of changes in Unified
Modeling Language models [10]. The present work advances our prior results in several respects: (1) ace

allows participants to express preferences over information, and applications of inferences, conflicts, and
other preferences in ace graphs. Our prior analysis of acceptability via justification could not account for
preferences, the set of inferences and conflict rules was closed (i.e., two inference rules were available and one
conflict rule), and no forms of meta-reasoning could be captured (one could not express that the application
of an inference rule is in conflict with the application of another inference rule, that a conflict may be in
conflict with the application of an inference rule, and so on). (2) ace offers algorithms for the retrieval of
information relevant for the evaluation of acceptability; no such features were available for our justification
graphs. (3) The evaluation of acceptability in ace is automated via the evaluation algorithm outlined above;
acceptability was evaluated manually in justification graphs. In conclusion, ace is (i) more expressive (due
to the presence of preferences and the support for forms of meta-reasoning), (ii) more “practical” (due to
the presence of retrieval and evaluation algorithms), and (iii) more general (as argued throughout the paper)
than the goal-oriented approaches, which we suggested previously.

The language in ace, and more precisely, the choice of the four labels – information, inference, conflict,
and preference – was influenced by the initiative towards a core ontology for argumentation in artificial
intelligence, within the Argument Interchange Format (aif) [3]. aif has recently been suggested to facilitate
the representation and exchange of data between various tools and agent-based applications that rely on
arguments. The basis for aif is the aif Argument Network, which is “the core ontology for argument entities
and relations between argument entities” [3]. The notion of argument is a construct in aif, defined as a
particular subgraph in an argument network. It is by placing restrictions on, or by specializing the concepts
in the argument network that classical argumentation frameworks can be obtained. ace thereby reuses the
core ontology of aif for the labels in ace graphs. To the best of our knowledge, no framework based on
aif and comparable to ace in terms of the language and the retrieval and evaluation algorithms has been
suggested.

Validation is an old problem in re, and has been raised in particular in relation to the very early require-
ments elicited from the parties involved in re. Leite and Freeman argued in an important paper [14] that
requirements should be elicited from different viewpoints, and “that examination of the differences resulting
from them can be used as a way of assisting in the early validation of requirements”. They suggested a
language for capturing viewpoints, and heuristics for a syntacticly oriented analysis of views to the aim of re-
solving their inconsistencies. This approach provides inputs to the negotiation required to reconcile different
opinions. An attractive characteristic of their proposal is that it is a means of validation applicable very early
in the elicitation of requirements. We are very close to their work in this motivation, although our proposal
differs in several important respects. ace has a considerably simpler language than their framework. Since
automated reasoning about acceptability happens in a propositional framework in ace, we can accommodate
various forms of re artifacts. As we treat propositions as atoms, Leite and Freeman’s approach can go
into more detail, and study the structure of the propositional content. While they can point precisely the
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disrepancies between views, we can help by evaluating the outcomes of a discussion of these discrepancies.
Nothing similar to the automated evaluation of acceptability is present in the viewpoint resolution method.
Discussions are not studied in detail. ace is complementary in this respect, as it can be used to record and
evaluate discussions of views and their inconsistencies. Gervasi and Nuseibeh [7] check predefined properties
on models generated from parsed text to identify nontrivial inconsistencies. While AC(ID, T (ID), OD) indi-
cates agreement about these artifacts, it certainly does not entail the internal consistency of the ID, T (ID),
and OD; inconsistency can be present even if agreement is present: inconsistency in that case remains un-
detected, making ace complementary to any approach tailored to detect nontrivial internal inconsistencies.
Validation of late requirements is well illustrated in a recent paper from Uchitel et al. [21]. They establish the
relation between scenarios and goals via “fluents that describe how the events of the operational descriptio
change the state of the basic propositions from which goals are expressed.” Graphical animations can be
synthesized from scenarios and goal model checking over scenarios is enabled to guide animations through
goal violation traces. Animations are subsequently presented to the relevant parties for discussion:

“The users were given a view to interact with and asked to perform certain tasks. This initiated discussion
as to how well the system supported their achieving their goals, and what might be changed in order
to make it more effective. Suggestions about variations in the order in which activities were performed
could be incorporated into the model with a few minutes work.”

ace can complement such an approach, especially when user-centered sessions involve the asynchronous
participation of geographically distributed users, so that discussion via forum-like tools becomes relevant.
Boehm’s WinWin groupware supports negotiation of requirements via the general WinWin approach. It
is usually defined as [1] “a set of principles, practices, and tools, which enable a set of interdependent
stakeholders to work out a mutually satisfactory (winwin) set of shared commitments.” WinWin differs from
ace in that it focuses on the negotiation context, which differs from discussions on which ace focuses. ace
is not tailored to negotiation.

Absence of validity can reflect errors in the rationale of the decisions taken when a method is applied.
The primary aim of design rationale (dr) research is to capture the why behind decisions in a design activity.
The classical ibis method [4] starts with a participant who posts the root issue of an ibis tree. Others
then post positions (i.e., ways of resolving issues) and arguments (to support or object to positions). Issues,
positions, and arguments are related via some of the allowed relationships: generalize, specialize, object,
support, replace, question. The process stops when consensus has been reached regarding the resolution of
issues. Subsequent dr methods, as reviewed by Louridas and Loucopoulos [15], share many characteristics
with ibis. The principal novelty of ace with regards to these other dr methods lies in the way it answers
the relationship expressivity question: What are the relationships between concepts in the dr method, and
how are they defined? At stake in this question is how to build a dr approach in the face of the multitude of
potentially relevant relationships; Louridas and Loucopoulos highlight this problem in the following passage:

“A fixed set of links [i.e., relationships] limits both the expressive and the functional capabilities of the
[design rationale] model. Regarding the expressive weaknesses of any such attempt, the sheer number
of the proposed relationships in the various [design rationale] approaches and the differences in their
semantics from approach to approach indicate that it is difficult to arrive at a widely accepted set of
predefined links. Each approach commits to a certain set, but there is no reason to believe that one of
these sets is innately better than the others.” ([15]: p.222–223)

This leads Louridas and Loucopoulos to leave out the definitions of the relationships in their Reasoning
Loop Model, which is their synthetic proposal for reflective design. In doing so, they adopt the so-called
free-link approach to the construction of a dr methods. This differs from the classical fixed-link approach,
where a closed set of relationships is defined, and their meaning set once and for all. The benefit of free-
links approach is that it leaves considerable freedom in use; its main downside is that it is hard to define,
even manual, techniques for the analysis of its graphs. The fixed-link approach allows for the definition
of analysis techniques, although the tendency to use many relationships renders the definition of alorithms
for the analysis of graphs difficult. ace adopts a third option, which has not been explored elsewhere
to the best of our knowledge. ace has a single relationship, the meaning of which are derived from the
labels of vertices that it connects. An inference, conflict, and preference label does not designate a specific
inference rule, conflict rule, or preference rule: one inference vertex may capture the application of modus
ponens, another the application of defesible inference; one preference vertex may capture the application of a
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transitive preference order, while another may capture the application of an intransitive preference. Finally,
and very importantly, ace allows one to accept or reject the application of an inference, conflict, and/or
preference rule, which is clearly impossible in the fixed-links approach to the construction of dr methods. If
links are fixed, no meta-reasoning on them is allowed by the dr method itself. Making the links free is no
better solution: what are then the criteria to accept or reject an arbitrary link? ace is interesting because it
leaves the freedom in the actual choice of an inference, conflict, or preference, while at the same time fixing
how an inference, conflict, or preference relates, in terms of acceptability, to another information, inference,
conflict, or preference vertex. E.g., i1 −→ I −→ i2 tells us in terms of acceptability that i1 does not make
i2 unacceptable, but is evidence to the acceptability of i2, and this regardless of the actual inference applied
to conclude i2 from i1. By writing i1 −→ I −→ i2, we may be abbreviating the expression “i1 supports i2”,
where “supports” has the same meaning as in ibis. I in i1 −→ I −→ i2 is thus locally defined (as opposed
to fixed-lines approach), but we still have precise criteria for accepting or rejecting any local reading of I in
i1 −→ I −→ i2 (as opposed to the absence of these criteria in the free-links approach): we will reject it if the
evaluation algorithm labels it R. Overall, ace shows a noveal way to balance the tradeoff between freedom
in use and the automated analysis of graphs, without falling into extremes of the usual fixed-links, or the
recent free-links approach to the construction of dr methods.

9 Conclusions and Future Work

Perfectly valid re artifacts capture exactly what the stakeholders really need. We distinguished this absolute
validity from relative validity. The latter asks if the stakeholders agree on the content of an re artifact,
being thereby relative to the stakeholders. Checking relative validity inevitably leads to a discussion between
the stakeholders and the requirements engineer. This paper offered the acceptability condition on an artifact
as a proxy for relative validity, and the ace framework for the evaluation of the acceptability condition via
the analysis of discussions. If the acceptability condition holds, then this signals that the relative validity
verifies for the given artifact and for the participants in a given discussion. The ace framework incorporates a
simple, but expressive language for the representation of the pieces of information exchanged in a discussion,
and the inference, conflict, and preference relationships between these pieces of information. Discussions are
represented via directed labeled graphs. We suggested an algorithm to retrieve subgraphs in order to inform
the discussions between the participants. ace incorporates another algorithm to evaluate the acceptability
condition in these graphs. Data from actual use will expectedly open many questions regarding usability and
relevance in practice.
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A Proofs

A.1 Proof of Proposition 5.9

Proof. We prove Proposition 5.9 by induction on the length of a path P in an ace graph G. Suppose that
v ∈ V (G) and there are various paths in G that end in v.

Take a path P = v′′ −→ v′ −→ v. Consider all possible combinations of labels on v′ and v. Of all possible
combinations, twenty four are allowed by the meaning of the To link in an ace graph. All twenty four are
listed in Table 1. We discuss in turn the first three cases, then skip the others as they become obvious after
the first three:

1. P = v′′ −→ Is(v
′′, ie) −→ ie: Table 1 indicates that the inference rule application Is(v

′′, ie) concludes
ie. If the inference rule application is not acceptable, then its conclusion is not acceptable, so that
Is(v

′′, ie) is relevant to the acceptability of ie. v′′ is the premise to the inference rule application
Is(v

′′, ie): if v′′ is not acceptable, then the inference rule application will not be acceptable, so that
v′′ is AC-relevant to the inference rule application, and thereby to the conclusion of the inference rule
application. Both v′′ and Is(v

′′, ie) are therefore relevant to the acceptability of ie.

2. P = v′′ −→ Cs(v
′′, ie) −→ ie: The conflict rule application Cs(v

′′, ie) makes v′′ attack ie. If the
conflict rule application is not accepted, then ie will be accetable (at least as far as the current path is
concerned). If instead the conflict rule application is accepted, but the dominant vertex v′′ is not, then
ie still is accepted. It follows that both v′ and Cs(v

′′, ie) are relevant to the acceptablity of ie.

3. P = v′′ −→ Ps(v
′′, ie) −→ ie: The preference rule application Ps(v

′′, ie) makes ie strictly less preferred
than v′′, that is, ie is dominated by v′′. If the preference rule application is not accepted, then ie will
not be dominated. If instead the conflict rule application is accepted, but the dominant vertex v′′ is
not, then ie still is accepted and not dominated. Both v′ and Ps(v

′′, ie) are clearly relevant to the
acceptablity of ie.

4. By applying the same reasoning as above for the remaining twenty one cases, observe that both v′′ and
v′ are relevant to the acceptability of v, and this regardless of the labels on all three vertices (and as
long as the meaning of the To link are not violated).

From there on, we extend the path with an additional vertex v′′′, so that P ′ = v′′′ −→ v′′ −→ v′ −→ v. If
we consider separately the subpath P x = v′′′ −→ v′′ −→ v′, and study all combinations of labels on v′′′, v′′

and v′ that are in accordance with the meaning of the link To, we need to consider exactly the same cases
as above for the initial path P = v′′ −→ v′ −→ v. For each case, the conclusion will be identical: v′′′ and v′′

are both relevant to the acceptability of v′. As v′ is relevant to the acceptability of v, we conclude that v′′′

and v′′ are both relevant to the acceptability of v. It is trivial to see that whatever the number of vertices
on a path between a vertex vx and the vertex v, vx is relevant to the acceptability of v.

A.2 Proof of Proposition 5.16

Proof. We first prove that the algorithm (i) does not loop indefinetly. V (G) and L(G) are finite; the while

loop explores only incoming lines to a given vertex, and never adds the same line or vertex twice to D[v]. It
follows that the algorithm will never loop indefinetly.

We prove by contradiction that the algorithm (ii) returns all direct and indirect vertices in favor of or
against the starting vertex v. Suppose that there is a vertex v′ that is either in favor or against the starting
vertex v, and that is not visited by the algorithm. The inner for each loop (Lines 7–15) moves from the
starting vertex along its incoming lines to its nonvisited adjacent vertices, adds these to the queue Q, and
removes the starting vertex. The while loop guarantees that any vertex added to Q is visited, along with
its outgoing lines. The while loop thereby ensures that any vertex in G having a path to the starting vertex
is visited. If v′ was not visited by the algorithm, then v′ is not on a path that ends in v. It is therefore a
contradiction that v′ is in favor or against v, but that it has not been found by the algorithm.

Finally, we prove that the algorithm (iii) has the running time in O(|V (D[v])|+ |L(D[v])|). The if-then

blocks in the inner for each loop (Lines 7–15) guarantee that no vertex or line in G will enter Q more than
once, and that all lines and vertices visited for the first time will be added to D[v]. It follows that the worst
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case arises when D[v] = G, so that the algorithm will traverse all lines and vertices of G, which gives the
O(|V (G)| + |L(G)|) as the upper bound on the time complexity, and O(|V (D[v])| + |L(D[v])|) as the time
complexity for the algorithm.

A.3 Proof of Proposition 5.27

Proof. We first prove that Algorithm 2 (i) does not loop indefinetly. The for each loop considers only the
vertices that are in-adjacent to vi. The number of vertices in D[v] is finite, so that inDegree(vi, D[v]) is finite.
The algorithm therefore always terminates.

We now prove that Algorithm 2 (ii) returns the overruling c-label among the c-labels propagated from all
in-adjacent vertices to vi in D[v]. The for each loop ensures that the t-set of vi receives a c-label from
each vertex in D[v] that is in-adjacent to vi, so that all c-labels propagated from these vertices are included
in the t-set. It is obvious that the last if block (cf., Lines 10–16) is simply a rewriting of the inference
rules for multiple c-labels (cf., Definition 5.25), so that the appropriate overruling label is computed by the
ComputeLabel procedure.

We finally prove that Algorithm 2 (iii) has the running time in O(inDegree(vi, D[v])). This is obvious, as
the for each loop considers each vertex in D[v] that is in-adjacent to vi.

A.4 Build the Transitive Closure of a Discussion

Any discussion D[vi] can contain preference rule applications. All preference rule applications need not
be the applications of the same preference rule. That is, different preference rules can be applied in a
discussion. Some of these preference rules may be transitive, so that it becomes necessary to build the
transitive closure Dc[vi] of these transitive preference rules on D[vi]. This is accomplished via the pro-
cedure BuildTransitiveClosure in Algorithm 6. The procedure takes a discussion D[vi] and a set
PT . Each member of PT is a set of applications of one same transitive preference rule; e.g., PT =
{{P1,1, P1,2, . . .}, {P2,1, P2,1, . . .}, . . .}, where {P1,1, P1,2, . . .} is the set of applications of the preference rule
P1, {P2,1, P2,2, . . .} is the set of applications of the preference rule P2, and so on. The potential presence of
more than one transitive relation in a discussion and the representation of the application of the transitive
relations via preference vertices (and not direct lines between vertices) makes it impossible to reuse as-is the
standard algorithms for the computation of the transitive closure of a directed graph.

BuildTransitiveClosure initialzes in two steps. The first step is to copy the vertices and lines of the
D[vi] to the new graph Dc[vi], so that all original vertices and lines are kept. The second step is the for each

loop in Lines 3–13. The loop considers each set pj ∈ PT of applications of the same transitive preference
rule. An empty graph Zj is created for each pj . Recall that a preference rule application relates two sets
of vertices, that is, any member of pj is of the form P(A,B), where A is the set of vertices of D[v], each of
which is made strictly more preferred by the preference application P(A,B) than each of the vertices in the
set B. I.e., any v ∈ A is strictly more preferred than any vertex v′ ∈ B. The purpose of Zj is to carry only
all vertices, on which any member of pj is applied. E.g., if P(A,B) ∈ pj , then Zj will contain all vertices in
A ∪ B and all lines from v ∈ A to the vertex P(A,B), and all lines from the vertex P(A,B) to each vertex
v′ ∈ B. The iteration of the for each loop in Lines 5–12 on P(A,B) will first add to Zj (via the for each

loop in Lines 6–8) the vertices of A and lines from each vertex in A to P(A,B), then add to Zj (via the for

each loop in Lines 9–11) all vertices of B and lines from P(A,B) to each vertex in B.
After the initialization step is performed, a set of graphs Zj is available. A graph Zj contains only all

preference rule applications from pj and all vertices from D[v], to which these preference rule applications
were applied. Observe that a Zj need not be a connected graph. Consider the graph below.

(Ex.18)

i1 // P1,1(i1, i2) // i2 // C1(i2, i3) // i3 // P1,2(i3, i4) // i4

Suppose that the graph above is a fragment of a discussion, and P1,1(i1, i2) and P1,2(i3, i4) are the only
applications in that discussion of the same transitive preference rule P1, then p1 = {P1,1(i1, i2), P1,2(i2, i3)}.
The initialization step will give Z1 for p1, whereby Z1 is shown below.
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Algorithm 6 Build the Transitive Closure of a Discussion

Require: A discussion D[vi] and a set PT . Each member pj of PT is the set of all applications of the same
transitive preference rule;

Ensure: The transitive closure Dc[vi] of transitive preferences in PT

1: procedure BuildTransitiveClosure(D[vi], P
T )

Initialization:
2: V (Dc[vi])← V (D[vi]) and L(Dc[vi])← L(D[vi])
3: for each set of transitive preference applications pj ∈ PT do

4: Create an empty graph Zj

5: for each v ∈ pj do

6: for each v′v ∈ L(D[vi]) and v is a preference on v′ do
7: Add v′ to V (Zj) and add v′v to L(Zj)
8: end for

9: for each vv′ ∈ L(D[vi]) and v is a preference on v′ do
10: Add v′ to V (Zj) and add vv′ to L(Zj)
11: end for

12: end for

13: end for

Identify and add new lines to Dc[vi]
14: for each Zj do

15: for each connected subgraph Zj,k of Zj do

16: Create an empty queue Wj,k

17: Create an empty queue Xj,k

18: for each v ∈ V (Zj,k) s.t. 6 ∃v′v ∈ L(Zj,k) do
19: Add v to Wj,k

20: end for

21: if Wj,k is empty then

22: Choose a random vertex v in Zj,k s.t. ∃vv′ ∈ L(Zj,k)
23: Add v to Wj,k

24: end if

25: while Wj,k is not empty do

26: for each vertex v in Wj,k do

27: Delete v from Wj,k

28: if v ∈ pj then

29: Append v to Xj,k

30: for each v′ 6= v in Xj,k do

31: if there is a path from v′ to v in Zj,k then

32: for each v′′′ ∈ V (Zj,k) s.t. ∃vv′′′ ∈ L(Zj,k) do
33: if v′v′′′ /∈ L(Dc[vi]) then
34: Add v′v′′′ to L(Dc[vi])
35: end if

36: end for

37: end if

38: end for

39: end if

40: for each v′′ ∈ V (Zj,k) s.t. v
′′ was never before in Wj,k and ∃vv′′ ∈ L(Zj,k) do

41: Add v′′ to Wj,k

42: end for

43: end for

44: end while

45: end for

46: end for

47: end procedure
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(Ex.19)

i1 // P1,1(i1, i2) // i2 i3 // P1,2(i3, i4) // i4

The graph Z1 above is not connected and has two connected subgraphs. The for each loop in Lines 14–46 in
Algorithm 6 considers each Zj. For a given Zj , each of its connected subgraphs Zj,k is processed in turn. For
a given Zj,k, two queues are created: Wj,k will carry vertices that have not been traversed and thereby need
to be traversed, while Xj,k will contain preference rule appliactions from pj , which were already traversed.
Lines 18–24 add vertices to Wj,k: if there are vertices in Zj,k that have no incoming lines, then these vertices
are added to Wj,k; if there are no such vertices, a random vertex with at least one outgoing line is added to
Wj,k.

At Line 25 in Algorithm 6, there is at least one vertex in Wj,k so that we can enter the while loop. Each
vertex in Wj,k will first be removed from Wj,k in Line 27. The if block in Lines 28–39 will check if the vertex
v is a preference rule application from pj . If so, v will be added to the queue Xj,k, which contains members
of pj , which were already visited through the while loop. After v is added to Xj,k, we consider each of
the preference rule applications v′ already in Xj,k and determine if there is a path in Zj,k from v′ to v. If
such a path exists, a line is added in Line 34 from v′ to each of the vertices in Zj,k, to which v applies. For
illustration, let the graph below be a Zj,k.

(Ex.20)

i1 // P1,1(i1, i2) // i2 // P1,2(i2, {i3, i4}) //

''OOOOOOOO
i3

i4

If we run the while loop on the graph Zj,k above, i1 will be the first vertex added to Wj,k. Given that i1
is not a preference rule application, the condition in Line 28 will not verify, so that the for each loop in
Lines 40–42 will be executed, and result in adding P1,1(i1, i2) to Wj,k. The while loop will then consider
P1,1(i1, i2), and the condition in Line 28 will verify. P1,1(i1, i2) will be added to Xj,k, which is empty. The
for each loop in Lines 40–42 will then add i2 to Wj,k. As for i1, no change will be made to Xj,k when
the while loop runs on i2. After i2, the while loop will consider P1,2(i2, {i3, i4}). This preference rule
application will be added to Xj,k, which already contains P1,1(i1, i2). As there is a path from P1,1(i1, i2)
to P1,2(i2, {i3, i4}), the condition in Line 31 will verify, and two lines will be added to Dc[vi]: P1,1(i1, i2)i3
and P1,1(i1, i2)i4, as shown in the graph below.

(Ex.21)

i1 // P1,1(i1, i2) // ((
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i2 // P1,2(i2, {i3, i4}) //

''OOOOOOOO
i3

i4

Proposition A.1. The procedure BuildTransitiveClosure applied to a discussion D[vi] and a set PT

(whereby each member of PT is a set of applications of one same transitive preference rule) (i) does not loop
indefinetly, (ii) returns the transitive closure Dc[vi] of all transitive preference rule applications PT on D[vi],
and (iii) has the running time in O(|V (Dc[vi])|+ |L(Dc[vi])|).

Proof. We first prove that BuildTransitiveClosure (i) does not loop indefinetly. The for each loop in
Lines 3–13 considers each pj ∈ PT . As the number of applications of transitive preference rules is below the
number of vertices in D[vi], and D[vi] is finite, the first for each loop always terminates. The for each

loop in Lines 14–46 considers each Zj , the number of which equals to |PT |, which is finite. The for each

loop in Lines 18–20 always terminates, as |V (Zj,k)| is finite. The for each loop in Lines 32–36 also always
terminates because |V (Zj,k)| is finite. Xj,k is also finite, so that the for each loop in Lines 30–38 always
terminates. The for each loops in Lines 15–45 and 14-46 will always terminate only if the while loop always
terminates. The latter stops when Wj,k empties. Wj,k will empty after all vertices in Zj,k were visited once.
The procedure BuildTransitiveClosure therefore does not loops indefinetly.
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We now prove that BuildTransitiveClosure (ii) returns the transitive closure Dc[vi] of all transitive
preference rule applications PT on D[vi]. We prove this by contradiction. Remark first that all applications
of transitive preference rules are input to the procedure via the set PT . Each member pj of that set is a set
of vertices in D[vi], and each of these vertices is a different application of one same transitive preference rule.
We therefore know from the outset the preference rules that are transitive and their applications in D[ci].
Suppose now that Dc[vi] is returned by BuildTransitiveClosure(D[vi], P

T ), and that it is missing a line
P1,1v from a transitive preference rule application P1,1 to the vertex v, as shown in the graph below. We
thus assume that the graph below is a subgraph of Dc[vi], and that there are no lines in Dc[vi] between the
vertices shown below other than the lines shown below.

(Ex.22)

v′′ // P1,1(v′′, v′) // v′ // P1,2(v′, v) // v

There are three ways for the procedure to miss to add P1,1v to Dc[vi]:

1. At initialization, the for each loop in Lines 3–13 does not add the line v′P1,2 to the relevant Zj . This
could only happen if that line was not in L(D[vi]), which contradicts the premise that the line is in
fact in D[vi].

2. At initialization, the for each loop in Lines 3–13 places P1,1 in some Za and P1,2 in some Zb, with
Za 6= Zb. This is only possible if P1,1 and P1,2 were in two different members pj of PT . If that was the
case, then P1,1 and P1,2 are applications of two different transitive preference rules, and the line P1,1v
should not be in Dc[vi] anyway.

3. Let P1,1 and P1,2 be in V (Z1,1). If there is no path in Z1,1 from P1,1 to P1,2, then the while loop will
not add the line P1,1v to Dc[vi]. That path is absent is P1,1 and P1,2 are in two disconnected subgraphs
of Z1,1, which is a contradiction, as Z1,1 is by definition a connected subgraph of Z1 (cf., Line 15).
That path can also be absent if Z1,1 is a connected graph. This, however, is again a contradiction, as
we assumed that a a path from P1,1 to P1,2 is present in D[vi].

We conclude that BuildTransitiveClosure returns the transitive closureDc[vi] of all transitive preference
rule applications PT on D[vi].

We finally prove that BuildTransitiveClosure (iii) has the running time in O(V (Dc[v]) +L(Dc[v])).
The upper bound on running time in the initialization step is O(|V (D[vi])|+ |L(D[vi])|). This is a pessimistic
estimate, as it assumes that all vertices in D[vi] are linked to at least one application of a transitive preference
rule. The pessimistic estimate for the main for each loop is O(|V (Dc[vi])|+ |L(Dc[vi])|), because it will con-
sider each Zj , and each Zj,k only once, and thewhile loop will visit each vertex in Zj,k only once. We conclude
that O(|V (Dc[vi])|+ |L(Dc[vi])|) is the upper bound on the running time of BuildTransitiveClosure.

A.5 Proof of Proposition 5.29

Proof. The proof of Proposition 5.29 is a combination of propositions on the following procedures called in
Algorithm 3:

• Proposition A.1 on the BuildTransitiveClosure procedure, which is called on a given discussion
D[v] and given a set of transitive preferences PT ;

• Proposition A.2 on the EnumerateSCC procedure, which is called on the transitive closure Dc[v] of
a discussion D[v];

• Proposition A.3 on the ContractSSC procedure, which is called on the set C of strongly connected
components of Dc[v];

• Proposition A.4 on the TopologicalSort procedure, which is called on the directed acyclic graph
DC , in which each vertex represents a strongly connected component from C;
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• Proposition A.5 on the ExpandSCC procedure, which is called on the topological sort SC of the vertices
in DC ; and

• Proposition A.6 on the LabelSCC procedure, which is called on Dc[v] and the topological sort of the
strongly connected components of Dc[v].

We first prove that Agorithm 3 applied to a discusssion D[v] (i) does not loop indefinetly. Given
that the procedures BuildTransitiveClosure, EnumerateSCC, ContractSCC, TopologicalSort,
ExpandSCC, and LabelSCC all always terminate (cf., respectively, Propositions A.1, A.2, A.3, A.4, A.5,
and A.6) when EvaluateDiscussion is called on a finite D[v] and a finite PT , EvaluateDiscussion always
terminates if it is called on a finite D[v] and a finite PT .

The proof that Agorithm 3 applied to a discusssion D[v] (ii) returns stable c-labels for all vertices in D[v]
if they exist, an error otherwise follows trivially from Propositions A.1, A.2, A.3, A.4, A.5, and A.6.

Finally, we prove that Agorithm 3 applied to a discusssionD[v] has the running time in O(C(Dc[v])(|L(Dc[v])|+
2|V (Dc[v])|)), where C(Dc[v]) is the number of simple cycles in Dc[v]. This follows trivially from Proposi-
tions A.1, A.2, A.3, A.4, A.5, and A.6, as O(C(Dc[v])(|L(Dc[v])|+ 2|V (Dc[v])|)) is the worst of the running
times of the procedures called by the procedure EvaluateDiscussion in Algorithm 3.

Proposition A.2. The procedure EnumerateSCC applied to the transitive closure Dc[v] of a discussion
D[v] (i) does not loop indefinetly, (ii) returns the set of all strongly connected components of Dc[v], and (iii)
has the running time in O(V (Dc[v]) + L(Dc[v])).

Proof. We do not discuss the detail of the proof as Tarjan’s strongly connected components algorithm [19]
can be reused as is, or an improved variant thereof can be employed instead (cf., e.g., [18]).

Proposition A.3. The procedure ContractSCC applied to the set C of strongly connected components of
Dc[v] (i) does not loop indefinetly, (ii) returns an acyclic directed graph DC , in which each vertex represents
exactly one strongly connected component from C and DC corresponds to the graph that would be obtained by
contracting down to a single vertex each strongly connected component in Dc[v], and (iii) has the running
time in O(|C|(|C| − 1)|L(Dc[v])|).

Proof. ContractSCC always terminates, as the number of strongly connected components is finite, and
the number of vertices in each of these components is finite.

We now prove that ContractSCC (ii) returns an acyclic directed graph DC, in which each vertex
represents exactly one strongly connected component from C and DC corresponds to the graph that would be
obtained by contracting down to a single vertex each strongly connected component in Dc[v]. The procedure
starts by adding as many vertices to DC as there are strongly connected components in C. As the rest
of the procedure does not add or remove vertices, |V (DC)| equals the number of elements in C. The first
for each loop will relate, via the function standsFor each vertex in DC to exactly one strongly connected
component in C. The second for each loop, and its first inner for each loop will together consider each pair
of vertices in DC . For each such pair, the innermost for each loop (cf., Lines 17–21 in Algorithm 3) will
add to DC a line between these two vertices only if there is a line in Dc[v] between these two vertices, and
in the relevant direction. The for each loops in Lines 15 and 16 together with the standsFor ensure that all
lines in Dc[v], which are not within strongly connected components, will be considered. For each such line
between two strongly connected components, a line will be added to DC between the vertices that represent
the two strongly connected components. It follows that DC corresponds to the graph that would be obtained
by contracting down to a single vertex each strongly connected component in Dc[v].

We finally prove that ContractSCC (iii) has the running time in O(|C|(|C|−1)|L(Dc[v])|). The first for
each loop has |C| cases to consider. The second for each loop will consider, for each of the |C| cases, |C| − 1
other case, then at most |L(c)| lines. The upper bound on the number of operations that the procedure
will perform is thus |C| + |C|(|C| − 1)|L(Dc[v]|). It follows that the upper bound on running time is in
O(|C|(|C| − 1)|L(Dc[v])|).

Proposition A.4. The procedure TopologicalSort applied to the directed acyclic graph DC (i) does not
loop indefinetly, (ii) returns the topological sort of the vertices of DC , and (iii) has the running time in
O(V (DC) + L(DC)).
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Proof. We do not discuss the detail of the proof as Tarjan’s depth-first search algorithm [20] can be reused
as is.

Proposition A.5. The procedure ExpandSCC applied to the sequence SC (i) does not loop indefinetly, (ii)
returns the sequence S, which is the topological sort of the strongly connected components of Dc[v], and (iii)
has the running time in O(|C|).

Proof. SC has |V (DC)| elements, and procedure ContractSCC makes V (DC) equal to the number of
strongly connected components in Dc[v]. As Dc[v] has a finite number of strongly connected components,
ExpandSCC alsways terminates.

It is trivial to see that S, returned by ExpandSCC is the topological sort of the strongly connected
components of Dc[v]. ExpandSCC first makes S the replica of SC , then replaces via the function standsFor
(defined by ContractSCC) each element of S by the corresponding strongly connected component of Dc[v].

Finally, the for each loop considers each element in S. The number of elements in S equals the number
of strongly connected components, so that ExpandSCC has the running time in O(C)

Proposition A.6. The procedure LabelSCC applied to the transitive closure Dc[v] of a discussion D[v] and
the topological sort S of all strongly connected components of Dc[v] (i) does not loop indefinetly, (ii) if there
are stable c-labels for all vertices in D[v], then a function Λ : V (D[v]) −→ {A,AD,R}, which returns the
stable c-label for each vertex in D[v]; if there are no stable c-labels, then an error, and (iii) has the running
time in O(C(Dc[v])(|L(Dc[v])|+ 2|V (Dc[v])|)), where C(Dc[v]) is the number of simple cycles in Dc[v].

Proof. It is straightforward to see that the while loop will terminate for any finite S and finite Dc[v],
since it considers each strongly connected component only once. For each strongly connected component,
the while loop will call either ComputeLabel or LabelComplexSCC. Proposition 5.27 indicates that
ComputeLabel always terminates. Proposition A.7 indicates that LabelComplexSCC always terminates.
Consequently, LabelSCC will never loop indefinetly, provided that Dc[v] is finite.

We now prove that if there are stable c-labels for all vertices in D[v], then LabelSCC returns a function
Λ : V (D[v]) −→ {A,AD,R}, which returns the stable c-label for each vertex in D[v]; if there are no stable
c-labels, then an error. The while loop distinguishes simple from complex strongly connected components.
A strongly connected component c is simple if |V (c)| = 1, and complex otherwise. Given that the while

loop considers each c according to the topological sort of strongly connected components of Dc[v], the
procedure ComputeLabel will be called on a simple c only after all strongly connected components that
precede it obtained stable c-labels for all of their vertices. Consequently, all vertices that are relevant for
the acceptability of the vertex in the simple c already have stable c-labels when ComputeLabel is called
on a simple c. Consequently, if ComputeLabel does not return an error when called on a simple c, then
the only vertex in c will obtain its stable c-label. When the while loop encounters a complex c, it will call
LabelComplexSCC. Proposition A.7 indicates that LabelComplexSCC will return at least two c-labels
in the c-sequence of each vertex in c, provided that there are stable c-labels for the vertices in c, whereby
the last c-label of the c-sequence of each vertex in c is its stable c-label. If the calls of ComputeLabel and
LabelComplexSCC do not return an error, and after all strongly connected components obtained their
c-labels, the function Λ : V (D[v]) −→ {A,AD,R} is defined in the for each loop in Lines 18–20.

Finally, we prove that LabelSCC has the running time in O(C(Dc[v])(|L(Dc[v])|+2|V (Dc[v])|)), where
C(Dc[v]) is the number of simple cycles in Dc[v]. ComputeLabel(vj , D

c[v]) is in O(inDegree(vj , D
c[v]))

(cf., Proposition 5.27), and the running time of LabelComplexSCC(ci, vj) is O((|L(ci)|+ |V (ci)|)(C(ci) +
1) + C(ci)|V (ci)|) (cf., Proposition A.7). The running time will be governed by the labeling of complex
strongly connected components of Dc[v], so that the running time of LabelSCC will be in:

O





∑

ci s.t. |ci|>1

[(|L(ci)|+ |V (ci)|)(C(ci) + 1) + C(ci)|V (ci)|]





In the worst case, every strongly connected component inDc[v] is complex. It follows that the upper bound on
the time complexity for LabelSCC is O(C(Dc[v])(|L(Dc[v])|+2|V (Dc[v])|)), where C(Dc[v]) is the number
of simple cycles in Dc[v].
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Proposition A.7. The procedure LabelComplexSCC applied to a complex strongly connected component c
(i) does not loop indefinetly, (ii) if there are stable c-labels for all vertices in c, then at least two c-labels in the
c-sequence of each vertex in c, with the last c-label of the c-sequence of each vertex being its stable c-label, an
error if there are no stable c-labels, and (iii) has the running time in O((|L(c)|+|V (c)|)(C(c)+1)+C(c)|V (c)|),
where V (c) is the number of vertices, L(c) the number of lines, and C(c) the number of simple cycles in the
strongly connected component c of the transitive closure Dc[v] of the discussion D[v].

Proof. We first prove that LabelComplexSCC (i) does not loop indefinetly. The procedure terminates as
soon as Q empties. There are three ways to empty Q, so that we consider three cases:

1. ComputeLabel returns an error. This occurs if propagateLabel encounters a disallowed input (cf.,
Line 7 in Algorithm 2). Lines 34–36 in Algorithm 5 ensure that Q empties if ComputeLabel returns
an error.

2. The last two c-labels on the c-sequence of First are identical (cf., Line 27 in Algorithm 5). This case is
possible because LabelComplexSCC will traverse First at least once after initialization, and thereby
add a second c-label. Condition in Line 27 verifies and Q empties, so that the procedure terminates. If
the last two c-labels in the c-sequence of First are not identical, then the next case applies.

3. The last two c-labels in the c-sequence of First are not identical (Line 30). The procedure will not
empty Q until p = 4. Q will therefore be emptied after a finite number of traversals of c, so that the
procedure cannot loop indefinetly.

We now prove that the procedure LabelComplexSCC (ii) if there are stable c-labels for all vertices in c,
then at least two c-labels in the c-sequence of each vertex in c, with the last c-label of the c-sequence of each
vertex being its stable c-label, an error if there are no stable c-labels. Three cases must be considered:

1. c contains a disallowed graph structure. The procedure detects a disallowed graph structure via the
procedure ComputeLabel. Lines 33–35 in Algorithm 5 ensure that the procedure returns an error
when the ComputeLabel procedure returns an error. ComputeLabel returns an error if the function
propagateLabel returns an error, that is, when propagateLabel is given an input other than those listed
in Table 1. If c contains a disallowed graph structure, then there is no interest in traversing the graph
any further. The error must be resolved before the labeling is attempted again.

2. The last two c-labels on the c-sequence of First are identical (Line 27 in Algorithm 5). We must prove
that the labels returned after the condition in Line 28 verifies indeed are the stable labels for all vertices
in c. We prove this in three steps:

(a) First, we prove that if there are two c-labels in the c-sequence of First, then each vertex in c
has at least two c-labels in its c-sequence. We prove this by contradiction. When the procedure
initializes, it adds the label A to the c-sequence of each vertex in c (cf., Line 5 in Algorithm 5).
The procedure adds First to the queue Q, and enters the while loop. The inner for each loop
(cf., Lines 12–36) adds c-labels to all vertices on lines that start in First and adds these vertices
to Q. The outer for each loop (cf., Lines 10–37) guarantees that each of the vertices in Q will
be traversed by the inner for each loop. The only way for some vertex vx not to obtain a second
c-label in its c-sequence before First obtains its second c-label is if the inner for each loop misses
vx, which can only occur if there are no lines in c that end in vx. We know that, in any strongly
connected component, any vertex is on at least one cycle. It is consequently a contradiction for c
to be a strongly connected component and have at least one vertex vx that has one c-label in its
c-sequence when First has two c-labels in its c-sequence. LabelComplexSCC therefore ensures
that all vertices have at least two c-labels if First has two labels.5

5It may be relevant to highlight why we need at least two c-labels in the c-sequence of each vertex after First has two
c-labels. During initialization, the procedure assigns the c-label A to all vertices. A is chosen because it is the weakest label,
being overruled by both AD and R (cf., Definition 5.25). If Q empties and only a single c-label is assigned to some vertices, then
we would be assuming that the stable c-label for those vertices is the label A, which was assigned when the procedure initialized.
We clearly cannot assume that the first c-label in a c-sequence is the stable c-label, because the it is added without considering
the c-labels on vertices adjecent via incoming lines.
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(b) It follows from the above that the second c-label is added to the c-sequence of First after all
vertices and lines in c were visited at least once. The next, third c-label is added to the c-sequence
of First, as soon as the procedure traverses all other vertices and all lines in c at least once after
the second c-label was added to the c-sequence of First. And so on. In other words, p increments
(cf., Line 23 in Algorithm 5) exactly when the procedure returns to First, having traversed all
other vertices and all lines in c at least once. It is apparent that if there are stable labels in c and
are discovered as soon as the the pth c-label is added to the c-sequence of First, then the c-labels
returned by the procedure for all vertices when the pth c-label is added to the c-sequence of First
must be identical to all c-labels returned by the procedure when the (p+ i)th c-label is added to the
c-sequence of First, where i > 0 is a positive integer. We prove this claim by induction on i in
p+ i and the number C(c) of simple cycles in c.

A preliminary remark is in order: The procedure LabelComplexSCC will return a c-label for
each vertex as soon as the (p − 1)th and pth c-labels in the c-sequence of First are identical. In
order to add the (p+1)th label when (p− 1)th and pth c-labels are identical, we will assume that
Lines 28–29 do not execute when the pth label is added, which is to say that First will remain in
Q when the pth label is added.

i. Suppose that C(c) = 1, i.e., c has a single simple cycle. (Note that, since c is a strongly con-
nected component, it must have at least one cycle, so that c cannot haveCountSimpleCycles(c) =
0.) If we assume C(c) = 1, all of c’s vertices are on that simple cycle (i.e., c has a directed
Hamiltonian cycle6). There is consequently exactly one simple path from any vertex in c to
any other vertex, and of course, exactly one simple cycle that starts and ends in a vertex.
Equivalently, there is in c exactly one line, say v′v, that ends in any one vertex, say v. Since
there are three possible c-labels A, AD, and R on any v′, the result of propagateLabel(v′, v)
will be any one of these three labels. We can picture c as shown below:

v // v′′ // . . . // v′dd

Given that all vertices are on the same simple cycle, and all vertices other than First must
be traversed at least once (cf., Point 2.a above) before LabelComplexSCC returns to First,
we know that as soon as First obtains its pth c-label, all other vertices will have p c-labels in
their c-sequences. Suppose that v = First in the graph above, and its (p− 1)th and pth labels
are identical, and observe the following:

A. propagateLabel(v, v′′) when v has p labels is identical to propagateLabel(v, v′′) when v has
p + 1 labels in its c-sequence; propagateLabel(v′′, . . .) when v′′ has p labels is identical to
propagateLabel(v′′, . . .) when v′′ has (p + 1) labels in its c-sequence; and so on. It ensues
that propagateLabel(v′, v) when v′ has p labels is identical to propagateLabel(v′, v) when v
has p+1 labels in its c-sequence. Now, a vertex in c may have other lines that end in that
vertex, but which are in Dc[v], but not in c. They do not influence the observations here,
beccause the vertices outside c, in which these lines originate, have obtained stable c-labels
before c is submitted to LabelComplexSCC. This is true by definition of the procedure
EvaluateDiscussion, as these vertices outside c are in strongly connected components
other than c; such strongly connected components precede c in the topological sort of the
strongly connected components of Dc[v].

B. We obtain the exact same conclusions as above if we replace (p + 1) with (p + 2) and p
with (p+ 1). It is trivial to see that we will obtain the same conclusions when we replace
(p+ i+ 1) with (p+ i+ 2) and (p+ i) with (p+ i+ 1), for any positive integer i > 0.

It follows then that if c has exactly one simple cycle and has stable c-labels, and they are
discovered as soon as the the pth c-label is added to the c-sequence of First, then the c-labels
returned by the procedure LabelComplexSCC for all vertices when the pth c-label is added
to the c-sequence of First must be identical to all c-labels returned by the procedure when the
(p+ i)th c-label is added to the c-sequence of First, where i > 0 is a positive integer.

6A directed Hamiltonian cycle is a cycle in a directed graph that traverses each vertex in the graph exactly once, except for
the vertex in which the cycle starts and ends (which is visited twice).
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ii. C(c) = 2, i.e., c has two simple cycles. In order to have the two distinct simple cycles, there
must be exactly one vertex, say vout in c such that there are exactly two lines that start in
vout, and there must be exactly one other vertex, say vin in c and exactly two other lines that
end in vin. c therefore has some variant of the structure shown below:7

. . . // v′′′ // . . . // viv

��
v // v′′ // vout

OO

// . . . // vv // vin // v′ii

Suppose that v = First. To add the (p+1)th c-label to the c-sequence of First, the procedure
must traverse at least once all other vertices in c. This is ensured by the if–then block in Lines
14–25. To see how, suppose that there are more vertices on the path from vout to vin that
does not pass through v′′′, than there are on the path from vout to vin that does pass through
v′′′. When the procedure reaches vout, it will consider separately each branch outgoing from
vout. We can picture this in the following way. When the procedure computes the number
of simple cycles, it obtains the upper bound on the number of simple paths from any vertex
to any other vertex in c. As we have two simple cycles in the graph shown above, we shall
place two walkers X and Y at the vertex First and assume that each walker takes equal time
to traverse a vertex and can only go forward in steps of one vertex. The two walkers will
reach vout at the same time, and take different paths along the branches from vout. One, say
X is thus sent along the shorter path and the other Y along the longer path. Clearly, X will
reach v′ before Y. Once X reaches v′, its next step is First. We do not allow X to add a
label to the c-sequence of First because some of the information in the graph, i.e., c, is not
taken into account. Namely, when X entered vin, it computed the c-label on vin by taking
into account the last c-label in the c-sequences of the vertices viv and vv. This can be seen
directly from the ComputeLabel procedure. At that same moment, Y was somewhere on
the path that ends in vin. Since Y had yet some vertices to traverse, and thereby their new
c-labels to compute, Y will add a label to viv. Since that c-label may be different from that
assumed by X when X labeled vin, Y may label vin with a different c-label when it gets to vin.
The procedure is designed so that it waits for all walkers to arrive to First before it appends
a new c-label to the c-sequence of First. Condition in Line 16 verifies when a walker reaches
First. Condition in Line 17 verifies if that walker is not the last of the C walkers (i.e., some
are still on their way to First); if the considered walker is the C(c)th walker, then we can
compute the new c-label on First, append its c-sequence, then add First to Q in Line 26 (and
thereby place new C(c) walkers at the vertex First). Suppose then that we send C(c) walkers
from First when First has p− 1 c-labels in its c-sequence and this yields a pth c-label in the
c-sequence of First identical to the (p− 1)th label. Since the C(c) walkers traverse the graph
in the exact same way to add the (p − 1)th c-label as they do to add the pth c-label to the
c-sequence of First, they will proceed in the same way when adding the (p+1)th label to the
c-sequence of First. Because the ComputeLabel procedure will be applied on the same pairs
of vertices and in the same sequence by the different walkers, i.e., the traversal will happen
in the exact same manner, we conclude that if the procedure returns the same c-labels for all
vertices when (p− 1)th and pth labels in the c-sequence of First are identical, then when the
algorithm traverses First for the (p + 1)th time, it will return same c-labels for all vertices
as it did when it traversed First for the pth time. The same conclusion can be drawn if we
replace (p+1) with (p+2), p with (p+1), and (p− 1) with p. Finally, it is trivial to see that
we will obtain the same conclusions when we replace (p+ i+ 1) with (p+ i+ 2), (p+ i) with
(p+ i+ 1), and (p+ i− 1) with (p+ i) for any positive integer i > 0.
It follows then that if c has exactly two simple cycles and has stable c-labels, and they are
discovered as soon as the the pth label is added to the c-sequence of First, then the c-labels
returned by the procedure for all vertices, when the pth c-label is added to the c-sequence of

7The discussion applies to any variant of the shown structure, i.e., any c that has exactly two simple cycles.
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First, must be identical to all c-labels returned by the procedure when the (p+ i)th c-label is
added to the c-sequence of First, where i > 0 is a positive integer.

iii. C(c) = n with n > 2, i.e., c has more than two simple cycles. When there are n simple cycles,
n walkers traverse the graph, and stop before a new c-label is appended to the c-sequence of
First. Suppose that First has p c-labels in its c-sequence, that the (p− 1)th and pth c-labels
are identical, and that the C walkers are sent from First in order to obtain the (p + 1)th
label in the c-sequence of First. Suppose finally that the (p+ 1)th and pth label on First are
identical, but that among the labels returned by the procedure when the (p+1)th is added to
First, there is one c-label returned for some vertex other than First that is different from the
c-label returned for that same vertex when the pth label was added to First. This can only be
the case if at least one of the walkers did not take the same path at p+1 as it did at p, which
in turn can only be the case if the path was modified. In order to modify the path, one needs
to change the vertices and/or lines and/or (λV -)labels on vertices after the last traversal. It is
therefore a contradiction to have the assumed situation when the C(c) walkers are traversing
the exact same graph and adding the pth and the (p+1)th c-label to the c-sequence of First.
Observe that the given conclusion is independent of the value of C(c). It follows that if c
has exactly C(c) simple cycles and has stable c-labels, and they are discovered as soon as the
the pth label is added to the c-sequence of First (hence, First’s (p − 1)th and pth labels are
identical), then the c-labels returned by the procedure for all vertices when the pth label is
added to the c-sequence of First must be identical to all c-labels returned by the algorithm
when the (p+ i)th label is added to the c-sequence of First, where i > 0 is a positive integer.

3. The last two c-labels on the c-sequence of First are different (Line 30 in Algorithm 5). We must prove
that no stable c-labels can be found for vertices in c when condition in Line 30 verifies. We prove this
by induction on p.

(a) p = 2, i.e., the vertex First has two c-labels in its c-sequence. We have shown in Point 2 above
that two same c-labels in the c-sequence of First indicate that stable c-labels have been found for
all vertices in c. We therefore suppose that the (p − 1)th and pth c-labels in the c-sequence of
First are different. Since we set p = 2 here, the first c-label is added at the initialization of the
procedure and is by default A. As the second c-label must be different from A, it is either AD or
R. The first column in Table 3 indicates these two possible combinations. That table then lists
all possible c-labels that will be added after the procedure traverses First for the second and third
time. The point with Table 3 is that patterns can be spotted with certainty as soon as the fourth

Table 3: Possible and allowed c-sequence of the vertex First in a strongly connected component c. The procedure
LabelComplexSCC ensures that the c-labels assigned at each traversal of First depend on the c-label added
in the last previous traversal.

Case: Assumed c-sequence of First after
LabelComplexSCC traverses for
the first time the vertex First:

Possible and allowed c-sequences
of First after LabelComplexSCC

traverses for the second time the
vertex First and given the c-
sequence in the second column:

Possible and allowed c-sequence
of First after LabelComplexSCC

traverses for the third time the
vertex First and given the c-
sequence in the third column:

1 〈A,R〉 〈A,R,A〉 〈A,R,A,R〉

2.1 〈A,R〉 〈A,R,AD〉 〈A,R,AD,A〉
2.2 〈A,R〉 〈A,R,AD〉 〈A,R,AD,AD〉
2.3 〈A,R〉 〈A,R,AD〉 〈A,R,AD,R〉

3 〈A,R〉 〈A,R,R〉 〈A,R,R,R〉

4 〈A,AD〉 〈A,AD,A〉 〈A,AD,A,AD〉

5 〈A,AD〉 〈A,AD,AD〉 〈A,AD,AD,AD〉

6.1 〈A,AD〉 〈A,AD,R〉 〈A,AD,R,A〉
6.2 〈A,AD〉 〈A,AD,R〉 〈A,AD,R,AD〉
6.3 〈A,AD〉 〈A,AD,R〉 〈A,AD,R,R〉

c-label is added to the c-sequence of First. These patterns allow us to say whether there are stable
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labels in g. We see that one traversal is not conclusive: the first and second label differ and we
cannot anticipate on this alone what the third label will be. We therefore perform an additional
traversal of First, which leads to the following case.

(b) p = 3, i.e., the vertex First has three c-labels in its c-sequence. The third column lists the possible
combinations of c-labels when there are three c-labels in the c-sequence of First. These are the
allowed cases when we assume that the first two c-labels are different. We see immediately the
pattern in case 1: the traversal that started from A gave R and the second traversal gave A. The
third traversal can only yield R. The only way for this not to happen is to have at least one
different path to First different from any path traversed when the preceding c-label was added. A
different path can only be present if the graph was modified after the first traversal. It is therefore
a contradiction that a different path is present and that the graph is identical. This same rationale
applies to the remaining cases 2.1–6.3. We see that first two different c-labels in the c-sequence
of First can yield stable c-labels after the second traversal, if the second traversal yields c-labels
shown in cases 3 and 5. In other cases, namely 2.1–2.3 and 6.1–6.3, all three different labels appear
in all three first slots in the c-sequence of First. To spot the pattern there, we need to perform
the third traversal of the vertes First.

(c) p = 4, i.e., the vertex First has four c-labels in its c-sequence. The fourth column lists the possible
combinations of c-labels when there are four c-labels in the c-sequence of First. These are the
allowed cases when we assume that the first two c-labels are different, and we have the third c-
label as given in the third column. We immediately see the patterns for cases 2.1–2.3 and 6.1–6.3,
where patterns could not be spotted after the second traversal of First. In 2.1 the pattern that
will repeat is A, R, AD; in 2.2 the labels are stable; in 2.3 the pattern is R, AD. In 6.1 the pattern
is A, AD, R; in 2.2 the patter is AD, R; in 6.3 we have stable labels in g. Table 3 provides all
patterns when three distinct labels are available and the first two c-labels in the c-sequence of
First are assumed different. If the first two c-labels are the same, we have immediately identified
the pattern that gives us stable labels for vertices in c.

(d) p = (4 + i) for the positive integer i > 0, i.e., the vertex First has more than four c-labels in its
c-sequence. We have seen in the preceding case, when p = 4 that we can immediately anticipate
the fifth c-label as soon as we have the first four. Patterns identified after the third traversal,
when p = 4 will repeat because the C walkers will traverse the same graph and produce the same
results as in their prior traversals. We have indeed seen by contradiction in Point 3.b above that
the next traversal will behave in the manner consistent with the previous ones. It follows that
once we have reached the fourth c-label in the c-sequence of First and the last two c-labels in that
c-sequence are not identical, no further traversals should be performed and the conclusion is the
absence of stable c-labels in c.

We finally prove that the procedure LabelComplexSCC in Algorithm 5 (iii) has the running time in
O((|L(c)| + |V (c)|)(C(c) + 1) + C(c)|V (c)|). Let c = (V (c), L(c)). LabelComplexSCC first computes the
number C(c) of simple cycles via Johnson’s algorithm [9] in O((|L(c)|+ |V (c)|)(C(c) + 1)).

The worst case complexity of the while loop is when c is a strongly connected tournament that has
no stable c-labels. That c is a tournament means that for any pair vi, vj in V (c), either vivj ∈ L(c) or
vjvi ∈ L(c). We take a strongly connected tournament for the worst case because it has the maximal number
of simple cycles. A classical result is that a strongly connected tournament on n vertices has a cycle of length
k, k, for k = 3, 4, . . . , n [17]. When c is a strongly connected tournament on |V (c)| vertices, it has a cycle of
length k, for k = 3, 4, . . . , |V (c)|. The number of different lengths of simple cycles in c is then |V (c)|−2, while
the number C(c) of distinct simple cycles in c is above |V (c)| − 2, as there can be more than one distinct
simple cycle of the same length. Let C(c)k be the number of distinct simple cycles in c of length k, so that:

C =

|V (c)|
∑

k=3

C(c)k

is the number of distinct simple cycles in c. Another classical result is that a strongly connected tournament
has a Hamiltonian cycle [2], so that C|V (c)| = 1. Say now that we send C(c) walkers from the vertex First,
that is, we apply LabelComplexSCC and consider only the number of operations needed to add the second
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c-label to the c-sequence of First. Since C(c)|V (c)| = 1, a single walker, call it H, will move along the
Hamiltonian cycle. This being the longest simple cycle in c, H will be the last of the C(c) walkers to arrive
at the vertex First, and it is upon the arrival of H that the second c-label will be added to the c-sequence of
First. H will traverse |V (c)| vertices and that same number |V (c)| of lines along the Hamiltonian cycle. It
is important to observe that First may, but need not be on all simple cycles in c. (This is because a strogly
connected tournament c need not have a vertex that is on all simple cycles.) Consider another walker, say
X, moving along a cycle of length, say 1

3 |V (c)|. We have the following two cases:

1. if First is on the cycle traversed by X, then X will traverse that cycle only once before H reaches First;

2. if First is not on the cycle traversed by X, then X will traverse that cycle three times before H reaches
First.

The second case above is clearly worse in terms of time complexity than the first, as the same cycle will

be visited three times intead of only once. For any given walker, the worst case is to traverse |V (c)|
k

times
its cycle of length k. The more times the walkers traverse their respective cycles, the higher the number
of operations that will be performed before the procedure LabelComplexSCC terminates. It follows that
the upper bound on the number of operations that all C(c) walkers will perform before the second c-label is
added to the c-sequence of First is:

|V (c)|
∑

k=3

2
|V (c)|

k
C(c)kk = 2C(c)|V (c)|

It is in fact impossible to have the case where the above holds, i.e., where the procedure will traverse |V (c)|
k

times each simple cycle of length k. This makes the above a much too pessimistic estimate of the time
complexity, but lets us avoid styding the relationship between the position of First on more cycles than the
Hamiltonian cycle in c, which affects the number of times each walker will traverse its own cycle. If there are
no stable c-labels in c, the procedure will perform three times the number 2C(c)|V (c)| of operations, as it
must add three c-labels to the c-sequence of First. We therefore conclude that the procedure has the running
time in O((|L(c)|+ |V (c)|)(C(c) + 1) + C(c)|V (c)|).
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