
How requirements evolution influences
software evolution

Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

Abstract Changing requirements are widely regarded as one of the most
significant risks for software systems development. However, in today’s busi-
ness landscape, these changing requirements also represent opportunities to
exploit new and evolving business conditions. In consonance with other ag-
ile methods, we advocate requirements engineering techniques that embrace
and accommodate requirements change. This agile approach to requirements
must nonetheless be systematic, especially with respect to accommodating
legal and nonfunctional requirements. This chapter examines the nature of
requirements evolution, and the two main problems that it entails. The first
is to correctly understand what is changing in the requirements, that is, the
elicitation problem. The other is to act on that new information using mod-
els and other representations of the requirements, influencing the architecture
and implementation of the software system. This chapter first motivates the
importance of considering changing requirements in evolving software sys-
tems. It then surveys existing approaches to requirements evolution with
respect to these two problems. Finally, the chapter describes a framework for
supporting requirements evolution, and discusses a real-life case study of the
payment card industry.1

Neil Ernst
University of British Columbia, e-mail: nernst@cs.ubc.ca

Alexander Borgida

Rutgers University, e-mail: borgida@cs.rutgers.edu

Ivan J. Jureta
University of Namur, e-mail: ivan.jureta@fundp.ac.be

John Mylopoulos
University of Trento, e-mail: jm@disi.unitn.it

1 Portions of this chapter are adopted from [28].

1

nernst@cs.ubc.ca
borgida@cs.rutgers.edu
ivan.jureta@fundp.ac.be
jm@disi.unitn.it


2 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

1 The importance of requirements in software evolution

Most software systems are now expected to run in changing environments.
Software developed using an agile methodology often focuses on releasing ver-
sions that are only partially completed, at least with respect to the full set of
customer requirements. Software must operate in a context where the world
is only partially understood and where the implementation is only partially
completed. What drives the implementation in this scenario is the require-
ments, whether represented as user stories, use cases, or formal specifications.

Focusing on software evolution only makes sense if one understands what
the objectives are for that software. These objectives are themselves fre-
quently changing. Indeed, as we discuss in this chapter, expecting one’s re-
quirements to be constant and unchanging ‘north stars’ is a recipe for disaster.
The ‘big design up front’ approach is no longer defensible, particularly in a
business environment that emphasizes speed and resiliency to change [39].

How does our view of the importance of the system’s requirements fit
with the historical literature on software evolution? Requirements have long
been seen as important, as we shall describe below, in Section 2. In 2005,
a paper on “challenges in software evolution” [51] highlighted the need to
research the “. . . evolution of higher-level artifacts such as analysis and de-
sign models, software architectures, requirement specifications, and so on.”
More recently, Mens [50] listed several key challenges for software evolution
including “How to ensure that the resulting system has the desired quality
and functionality?” This question is the motivation for our work in require-
ments evolution, as we firmly believe that understanding the evolution of
non-functional requirements, in particular, will help answer this.

There are three major objections to making requirements more prominent
in the study of software evolution. For one, the tangible is easier to study. In
many cases, particularly short-term or small-scope projects, requirements are
either not used explicitly or stale the moment they are ‘finished’. However,
this is seldom true of high-value software products, and where it is, typically
is symptomatic of a larger software process or organizational pathology. Sec-
ondly, in terms of quantity, most change tasks involve low-level corrective
maintenance tasks, rather than more complex adaptive maintenance. While
the numbers of change tasks might be greater, our position is that the adap-
tive changes implied by requirements evolution are more complex and more
costly, and therefore more important, than identifying bug fixes. Finally, re-
quirements change is seen as part of the problem domain and therefore un-
touchable, much like understanding the organizational objectives might be.
We believe that the transition from problem to solution is of paramount
importance in software development.

It is our view that requirements documents should drive implementation
decisions. In other words, requirements must be tangible, and requirements
must be relevant. While they may take the form of work item lists, as is the
case in most industrial tools, preferably they would be well-structured graphs



How requirements evolution influences software evolution 3

that represent all aspects of the requirements problem, capturing stakeholder
objectives, domain assumptions, and implementation options. Such models
allow for lightweight reasoning (e.g., [29]) where the key challenge is ‘re-
quirements repair’: re-evaluating the available solutions to solve the changed
requirements, adding (minimal) new implementations where it is necessary
[52].

In this chapter, we focus on requirements evolution. We begin by introduc-
ing the context for considering requirements in the broader field of software
evolution. We then turn to the history of research into requirements evolu-
tion, including empirical studies. Next, we look at current approaches, focus-
ing first on how industry, and industry tools, have dealt with requirements
evolution. We then survey the state of the art in requirements evolution re-
search. To conclude this chapter, we elaborate on one approach to managing
changing requirements, with examples drawn from the payment card indus-
try.

1.1 The Requirements Problem

As a reference framework, we introduce an ontology for requirements. This
work is based on [41] and [40], both of which derive from the fundamental
requirements problem of Zave and Jackson (Z&J) [73]. In modern require-
ments engineering, it is often the case that one distinguishes different kinds of
sentences encountered in stating a “requirements problem”, according to the
“ontology” of the requirements modeling language, or RML. In Z&J’s original
formulation, given a set of requirements R (which are optative—expressing
desires), the requirements problem is to find a system specification S and (in-
dicative) world knowledge W that holds such that W ∪S ` R but W ∪S 6` ⊥
(` being classical logical deduction and ⊥).

The Requirements Evolution Problem extends this notion to intro-
duce change over time:

Problem statement: Given (i) requirements R, domain knowledge W, and (ii)

some chosen existing solution S0 of tasks (i.e., one that satisfies W,S0 ` R), as
well as (iii) modified requirements problem (δ(R),δ(W),δ(T)) that include modified

requirements, domain knowledge and possible tasks, produce a subset of possible

specifications Ŝ to the changed requirements problem (i.e., δ(W ), Ŝ ` δ(R)) which
satisfy some desired property Π, relating Ŝ to S0 and possibly other aspects of the

changes.

In what follows we use this framework to characterize the challenge of
managing evolving requirements. In particular, while software evolution tends
to focus on managing largely changes in S, in the field of requirements we are
faced with changes in any or all of S,W,R. Furthermore, since these three
components are related (W ∪ S ` R), changes in one impacts the validity of
the inferences drawn. For example, changes in requirements R, i.e., from R0



4 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

to R1, will force a re-evaluation of whether W ∪ S still classically entails the
satisfaction of R1.

2 Historical Overview of Requirements Evolution

In this section, we survey past treatments of evolving requirements. We begin
by exploring how software evolution research dealt with changing require-
ments.

The importance of evolving requirements is directly connected to the wider
issue of evolving software systems. While the majority of the literature fo-
cused on issues with maintaining and evolving software, a minority tries to
understand how changes in requirements impact software maintenance.

The study of software evolution began when IBM researchers Belady and
Lehman used their experiences with OS/360 to formulate several theories of
software evolution, which they labeled the ‘laws’ of software evolution. This
work was summarized in [45]. These papers characterize the nature of soft-
ware evolution as an inevitable part of the software lifecycle. ‘’Inevitability’
implies that programs must continually be maintained in order to accommo-
date discrepancies with their continuously evolving operational environment.
One law states that software quality will decline unless regular maintenance
activity occurs, and another implies that as a consequence of such mainte-
nance a system’s complexity increases over time. While their work largely
focused on implementation artifacts, it clearly acknowledged requirements as
a driving force for the corrective action necessary to reconcile actual with
anticipated behavior: “Computing requirements may be redefined to serve
new uses [12, p. 239].”

Early in the history of software development it became clear that building
software systems was nothing like engineering physical artifacts. An obvi-
ous difference was that software systems were malleable. Reports suggested
a great deal of effort was being spent on maintenance tasks (40% by some
measures [11]). Swanson [61] focused on post-release maintenance issues,
and looked beyond low-level error fixing (which he termed corrective main-
tenance) to address the issues that Lehman and Belady raised. His work
identified “changes in data and processing environments” as a major cause of
adaptive maintenance activity. Swanson’s paper marks one of the first times
researchers realized that it wasn’t possible to ‘get it right the first time’.
In some projects, anticipating everything was essential (safety-critical sys-
tems, for example); Swanson’s insight was that in other projects this wasn’t
cost-effective (although it remained desirable).

Development processes still reflected the engineering mindset of the time,
with heavy emphasis on up-front analysis and design. US military standards
reflected this, since the idea of interchangeable parts was particularly im-
portant for military logistics, and the military had experienced enormous



How requirements evolution influences software evolution 5

software cost overruns. These pressures were eventually realized as the US
government’s MIL-STD–498, criticized for insisting on a waterfall approach
to software development. Afterwards came the slightly more flexible software
process standards IEEE/ISO–12207, and IEEE–830, perhaps the best known
standard for software requirements to date. But David Parnas’s paper on the
“Star Wars” missile defence scheme [56] illustrated the problems with this
standard’s philosophy, many of which come down to an inability to antic-
ipate future requirements and capabilities, e.g. that “the characteristics of
weapons and sensors are not yet known and are likely to remain fluid for
many years after deployment” [56, p. 1329]. This demonstrated the massive
impact unanticipated change can have on software systems, a central con-
cern of this chapter. Indeed, the US military no longer insists that software
be developed according to any particular standard [49, p. 42].

In response to the problems with the waterfall approach, iterative mod-
els, such as Boehm’s ‘spiral’ model of development [14] called for iterations
over system design, so that requirements were assessed at multiple points.
However, such process-oriented models can do little to address unanticipated
changes if they do not insist on releasing the product to stakeholders – a
very recent emphasis in software engineering (e.g., [4]). As Fred Brooks notes,
“Where a new system concept or new technology is used, one has to build
a system to throw away, for even the best planning is not so omniscient as
to get it right the first time. Hence plan to throw one away; you will, any-
how.” [16] The point of Brooks’s quote is to emphasize how little one can
anticipate the real concerns in designing software systems, particularly novel,
complex systems like OS/360. Instead, development should be iterative and
incremental, where iterative means “re-do” (read ‘improve’) and increment
means “add onto”, as defined in [22].

2.1 From Software Evolution to Requirements
Evolution

This section focuses on that part of software evolution that is concerned with
changing requirements or assumptions (i.e., the components of the require-
ments problem which are in R or W ). Historically, some researchers have
turned to focus in detail on this relationship between requirements and evo-
lution of software. Not all maintenance activities can be said to result in
‘software evolution’: for instance, if designers are correcting a fault in the
implementation (S) to bring it (back) into line with the original require-
ments (which Swanson called ‘corrective maintenance’). Chapin [18, p. 17]
concludes that evolution only occurs when maintenance impacts business
rules or changes properties visible to the customer.

Harker et al. [33] extended Swanson’s work to focus on change drivers with
respect to system requirements (summarized in Table 1), because “changing



6 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

requirements, rather than stable ones, are the norm in systems development.”
[33, p. 266] He characterized changes according to their origins. At this point,
requirements engineering as a distinct research discipline was but a few years
old, and an understanding was emerging that the importance of requirements
permeated the entire development process, rather than being a strictly ‘up-
front’ endeavour.

Table 1 Types of requirements change [33]

Type of requirement Origins

Stable Enduring Technical core of business

Changing Mutable Environmental Turbulence
Emergent Stakeholder Engagement in Requirements Elicitation

Consequential System Use and User Development

Adaptive Situated Action and Task Variation
Migration Constraints of Planned Organisational Development

As an aside, it is interesting to ponder whether there is in fact such a thing
as an enduring requirement, as defined by Harker et al. A useful analogy can
be derived from Stuart Brand’s book on architectural change in buildings
[15]. He introduces the notion of shearing layers for buildings, which distin-
guish change frequency. For example, the base layer is Site, which changes
very little (absent major disasters); Skin describes the building facade, which
changes every few decades, and at the fastest layer, Stuff, the contents of
a building, which changes every few days or weeks. The implication for re-
quirements is that good design ought to identify which requirements are more
change-prone than others, and structure a solution based on that assump-
tion. There probably are enduring requirements, but only in the sense that
changing them fundamentally alters the nature of the system. For example,
if we have the requirement for a credit card processing software to connect
to the customer’s bank, such a requirement is sufficiently abstract as to defy
most changes. On the other hand, we can easily foresee a requirement “Con-
nect to other bank using SSL” changing, such as when someone manages to
break the security model. We posit that the enduring/changing distinction
originates in the abstractness of the requirement, rather than any particular
characteristic.

The above taxonomy was expanded by the EVE project [42]. They empha-
sized that requirements evolution is inevitable and must be managed by pay-
ing attention to three areas: monitoring the operating environment; analysing
the impact of the system on stakeholders, or on itself; and conducting risk
management exercises. They proposed a process model for systematizing this
analysis.

Changes to requirements have long been identified as a concern for software
development, as in Basili [11]. Somerville and Sawyer’s requirements text-



How requirements evolution influences software evolution 7

book [60] explicitly mentions ‘volatile’ requirements as a risk, and cautions
that processes should define a way to deal with them. Their categorization
closely follows that of Harker et al.

Several research projects in the area of information systems modeling have
touched on evolution. CIM [17] labeled model instances with the time period
during which the information was valid. Furthermore, CIM “should make in-
cremental introduction and integration of new requirements easy and natural
in the sense that new requirements should require as few changes in an ex-
isting model as possible [17, p.401].” Little guidance was given on how to
do this, however. In a similar vein, RML [32], ERAE [25] and Telos [53]
gave validity intervals for model instances using logic augmented with time
arguments. These modeling languages were oriented to a one-off requirements
model that can then be used to design the system (rather than allowing on-
the-fly updates and inconsistencies during run-time). In other words, these
methodologies assume complete knowledge of the system, e.g., the precise
periods for which a concept is applicable.

Research has also considered the issue of maintaining consistency in re-
quirements models. Models can be inconsistent when different users define
different models, as in viewpoints research. The importance of permitting
inconsistency in order to derive a more useful requirements model was first
characterized by Easterbrook and Nuseibeh [26]. We return to the use of
formal logic for managing evolving requirements in Section 4.

Finally, one could consider the elaboration of a requirements model (e.g.,
from high-level objectives to lower-level technical requirements) as ‘evolving’
requirements (as in [8]); we focus on requirements models for which elicitation
is assumed to be completed, and now changes, rather than the process of
requirements elicitation at an intermediate point in time.

2.2 Empirical Studies of Requirements Evolution

This section motivates the importance of the Requirements Evolution Prob-
lem (REP) by reviewing several academic studies that address the issue. In
particular, the focus of this section is on research projects which looked at
industrial REPs. Many industrial case studies focus on source code evolution,
and little attention is paid to the requirements themselves (which presum-
ably are driving a number of changes to source code). This is likely because
requirements are often not available explicitly, unlike source code. This is
particularly true in the case of open-source software studies. Nonetheless, the
following studies do show that, when available, the problem of requirements
change is important and not particularly well understood.

The SCR (Software Cost Reduction) project at the U.S. Naval Research
Laboratory was based on a project to effectively deliver software require-
ments for a fighter jet, the A–7E. In a retrospective report on the project [3],



8 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

which includes updates since the initial release in 1972, Chapter 9 lists some
anticipated changes. Of interest is that these changes, while anticipated, are
not very detailed, and some invariants are assumed (which we would term
domain assumptions, such as “weapon delivery cannot be accurate if location
data is not accurate”).

Chung et al. [21] looked at the problem of (non-functional) requirements
evolution at Barclays, a large bank. After introducing a modeling notation,
they considered the change of adding more detailed reporting on accounts to
customers. The paper showed how this change can be managed using their
modeling notation, leading to new system designs. In particular, the paper
focused on tracking the impact of a change on other non-functional prop-
erties of the system, such as accuracy and timeliness. Their notation allows
analysts to model priorities and perform semi-automated analysis of the up-
dated model. The paper concludes with some principles for accommodating
change.

In [9], Anton and Potts looked at the evolution of the features offered
by a customer-centric telephony provider. The paper traced, using historical
documents, which features were available and how this changed over time.
In particular, the paper focused on the consequences of introducing certain
features, with the objective of reducing the effort of providing a new service
to customers. This survey was end-user oriented as it focused on how features
appeared to users of telephone services, not other businesses or the internal
feature requirements.

Anderson and colleagues conducted a series of case studies of changing
requirements [6, 7]. Their experiences led to the development of a taxonomy
for requirements evolution. The case studies focused on smart cards and air
traffic control, and spurred the development of the Requirements Maturity
Index, in order to measure how frequently a particular requirement changed.
However, the index did not provide for different measures of requirements
value or importance.

Tun et al [63] use automated extraction techniques to obtain problem
structures from a large-scale open source project (Vim). They concede that
requirements may not be easily extracted, but contend that these problem
structures shed some useful light on how one might implement new require-
ments. There is relevant work in the Mining Software Repositories community
on extraction of requirements from project corpora, most recently the work
of Hindle et al. at Microsoft [35]. They correlated project specifications to
source code commits and were able to identify related changes.

Many studies of changing requirements have focused on software product
lines. In a product line environment, one has many different products which
are assembled from varying combinations of implementation level artifacts.
An example of a product line is car models: one might have a base model
with no niceties such as power steering, an intermediate model with improved
options, and a top-end model with a bigger engine, more audio capability,
and so on. The key insight is that the underlying car is the same in all cases.



How requirements evolution influences software evolution 9

Change is clearly a concern; does a change get implemented for all products?
Which products contain that requirement? Industrial case studies looking at
this issue include [69] and [70].

Herrmann et al [34] used an industrial case study to identify the need
for “delta requirements” – requirements which must be added subsequent to
software delivery, and then took an existing methodology and extended it to
incorporate modeling techniques for delta requirements.

The issue of changing requirements in the highly formal requirements envi-
ronment of spacecraft design was considered in [54], with the aim of minimiz-
ing the number of downstream changes required, as each change is potentially
very costly to re-implement. The authors proposed a technique, semantic de-
coupling, for modeling requirements to minimize the dependencies between
abstraction levels.

A final example industrial case study [48] designed a framework for evolv-
ing security requirements and applied it to the air traffic control domain.
They first used interviews with stakeholders (such as controllers) to model
the security requirements of the domain, then asked users to conduct an evo-
lution scenario and identify what must change in the existing system. While
preliminary, this shows the practical benefits possible by focusing on require-
ments.

This sampling of academic case studies of changing requirements in indus-
trial settings has provided some clear examples of the importance of require-
ments evolution. In domains as varied as spacecraft, smart cards, and phone
features, changing requirements are clearly a major concern for business, and
the source of much cost and effort.

3 A Survey of Industry Approaches

It is useful to consider the treatment of changing requirements in industry
settings, as a way to understand the current practices, and how these might
inform research proposals. Industrial tools have a strong focus on interoper-
ability with office software like Microsoft Word, because a common use-case
for these tools is generating documentation. Furthermore, these tools are not
the whole story, as many industry consultants (e.g., [68, 44]) focus as much
on managing change through methodology as through tools. This means cre-
ating a change process which might incorporate reviews, change tracking,
prioritization meetings, and so on.



10 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

3.1 Standards and Industry

IEEE Standard 830 [37], which describes a standard for “Software Require-
ments Specification” (SRS) is the culmination of the strict specification ap-
proach, what some have derisively called “Big Requirements Up Front”. It
lays out in great detail the standard way for describing “what” must be built.
Section 4.5 of the standard addresses evolution, which it recommends manag-
ing using notation (marking requirements as “incomplete”) and processes for
updating the requirements. As with most standards, this is reasonable in ma-
ture organizations, but prone to problems if these key ideas are not followed.
The standard acknowledges that evolutionary revisions may be inevitable.

3.2 Requirements Management Tools

Commercial tools have generally done a poor job supporting change. IBM
DOORS2 and IBM Requisite Pro are document-centric tools whose main
interface is hierarchical lists (e.g., “R4.2.4 the system shall . . . ”). Traceability
is a big feature, and requirements can be linked (to one another and to other
artifacts, such as UML diagrams). Multiple users are supported, and changes
prompt notification that the requirement has changed. Version control is
important: each requirement is an object, and the history of that object is
stored, e.g., “modified attribute text” on DATE by USER. In DOORS, one
can create requirements baselines which are similar to feature models. One
can extend the baseline to create new products or changes to existing projects.
It is not clear what the methodology for defining a baseline is.

The tool focus of Blueprint Requirements Center3 is agile, with strong sup-
port for simulation and prototyping. Workbenching requirements scenarios
is important in Blueprint. Workbenching or simulation helps analysts under-
stand all the potential variations, as well as giving something concrete to the
business user before costly implementation. Blueprint also focuses on short-
cycle development, allowing requirements to be broken into sprint-specific
stories or features. What both Blueprint and the IBM suite miss, however, is
a way to combine requirements management with workbenching integrated
into a framework for evaluating change impacts.

2 http://www-01.ibm.com/software/awdtools/doors/
3 http://www.blueprintsys.com/products/



How requirements evolution influences software evolution 11

3.3 Task Managers

An increasingly popular strategy in industry is to forego IEEE specification
conformance in favour of lightweight task management tools. This might
be described as the agile approach to requirements: treating requirements as
tasks that must be carried out. Jira, from Atlassian Software4, is a commonly-
used tool in large-scale projects. Jira allows one to manage what is essentially
a complex to-do list, including effort estimation, assignment, and some type
of workflow management (e.g., open issue, assign issue, close issue). Similar
tools include Bugzilla, Trac, and IBM’s Rational Team Concert. More re-
cently, Kanban [5] has made popular visual work-in-progress displays, the
most basic of which are whiteboards with lifecycle phases as swimlanes. These
tools are well-suited to the deliberate reduction of documentation and adap-
tive product management that agile methodologies such as Scrum or XP
recommend.

3.4 Summary

Particularly for smaller organizations, requirements are not treated at a high-
level, often existing as an Excel spreadsheet or maintained implicitly [10].
Furthermore, the transition to agile software development has made one of its
chief priorities the reduction of unnecessary documentation (“working soft-
ware over comprehensive documentation”5). It is an open and important re-
search question whether omitting at least some form of explicit requirements
model is sustainable in the long-term.

The tools we have described work well for managing low-level tasks, such
as fixing specific bugs. However, connecting the design and roadmapping
component of product management with the specifics of task management
is more difficult. While some might use tools like Confluence or other wikis
for this knowledge-management task, spreadsheets are still very popular for
tracking lists of possible features. What is missing is a higher-level view of
“why” changes are being made, and what impact those changes might have
on satisfying the requirements. A tool which can preserve the overall require-
ments model throughout the lifecycle is necessary. That is not to say such an
approach could not be integrated into a tool like IBM DOORS. Indeed, there
is a lot of work on integrating requirements tools, task managers, code repos-
itories and so on using product lifecycle management (PLM) or application
lifecycle management (ALM). The emerging standard for Open Services for

4 http://www.atlassian.com/software/jira/
5 http://agilemanifesto.org/



12 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

Collaboration (OSLC)6 is one initiative that looks to overcome the traditional
silos.

4 Recent Research

We now survey some of the latest research in requirements evolution. In
many cases, research has focused most on eliciting requirements and poten-
tial changes, and less on how such models/representations would be used
post-implementation to drive changes in the software. Interest in the notion
of requirements at run-time has greatly increased recently, however, and we
touch on this below. There are definite overlaps with work on adaptive soft-
ware (see the chapter later in this book by Müller et al.) and model-driven
evolution.

4.1 Problem Frames Approach

We mentioned the empirical study of Tun et al. [63] earlier. This work builds
on the seminal problem frames approach of Michael Jackson [38] to extract
problem frames from existing software systems in order to recover the orig-
inal requirements. A problem frame captures a particular set of elements
involved in the Z&J approach to the requirements problem: W,S ` R. For
example, the text editor Vim has a feature “Spell Completion”. From the
requirement description, Tun et al. reconstruct the problem diagram using
problem frame syntax: the requirement is on the right, “complete word au-
tomatically”, linked with shared phenomena including “keyboard user” and
“buffer”, and finally, to the machine element implementing “Spell Comple-
tion” (the feature). Matching related problem diagrams can show feature
interaction problems, in this case, where two features both use the shared
phenomena of “buffer”.

Another project by Tun et al.[62] uses problem frames to identify common
problematic design patterns, and to then transform that feature using a cata-
log. The idea is to support evolution of features using well-known patterns to
avoid feature interaction problems. Finally, Yu et al. [72] use problem frames
in the context of security requirements. Their tool, OpenArgue, supports ar-
gumentation about requirements satisfaction that can be updated as more
information arrives.

6 http://open-services.net/

http://open-services.net/


How requirements evolution influences software evolution 13

4.2 Extensions of the NFR Framework

The NFR model, introduced in [20], represented a qualitative approach to
modeling system requirements as refinements of high level objectives, called
goals. This has been extended to reason about partial goal satisfaction in
a number of ways. To begin, Giorgini et al. [31] and Sebastiani et al. [59]
formalized a variant of the NFR framework’s qualitative approach, the idea
being that qualitative reasoning is better suited to up-front problem explo-
ration. Their tools (e.g., GR-Tool7) can reason over qualitative models and
generate satisfying alternatives.

What was not well understood was how to turn these into specifications.
From the evolution point of view, work on alternatives and variability in goal
modeling (e.g., [47], [43]) allows these qualitative models to capture context-
driven variability, a point also made in Ali et al. [2], who make the case that
requirements variability necessitates the monitoring of the operating con-
texts. This monitoring information is then used to inform a designer about
possible revision options. In all these cases the main contribution to require-
ments evolution is in eliciting alternative solutions and extending the system
specification with annotations for monitoring for violations of these models.
Dalpiaz et al. [23] also introduced qualitative requirements variability, but in
the area of dynamic reconfiguration. This proposal goes from modeling and
elicitation to system specification over time, i.e., not just for the initial design
but also once the system has been released.

4.3 Run-time Adaptive Requirements

Work in the area of adaptive requirements is tangentially connected. In par-
ticular, the notion of “requirements at runtime”, explored in a series of
workshops at the Requirements Engineering conference (see appendix) , in-
troduced the notion of using requirements models to drive system changes.
Qureshi et al. [58] define a set of ontological concepts for managing run-time
adaptation to the changes in the requirements problem. The main achieve-
ment is the addition of context to requirements problems, in order to suggest
variations when contexts change. In the RELAX framework [67], a language
is designed to specifically manage “the explicit expression of environmental
uncertainty in requirements”. When a new situation is monitored in W (the
world), the RELAX language is looked to for ways to loosen the specification
S. In similar fashion, Epifani et al. [27] use a formal model and a Bayesian
estimator to adapt numeric parameters in the specification at run-time. This
allows them to set an initial model of the system and then fine-tune various
parameters as more information is collected.

7 http://troposproject.org/tools/grtool/

http://troposproject.org/tools/grtool/


14 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

4.4 KAOS-based Approaches

A major contribution to the RE literature was the KAOS goal modeling
framework, first introduced in [24]. This work has been extended in a num-
ber of ways. One direction has considered the importance of alternatives
in system design. From an evolution perspective, variability and alternatives
support resiliency in two ways when change is encountered. First, the upfront
analysis supports enumeration of possible scenarios that need to be handled
(for example, the obstacles encountered in [65]). Second, variants can be man-
aged as a form of product line, and called upon if and when things change
(see below for more on product lines and requirements). Later work [46] intro-
duced probabilistic techniques for monitoring the partial satisfaction of goals
in KAOS models. As designers explore the solution space, numeric measures
are used to evaluate the value of a given configuration. Not covered in detail
in the paper is how this model would be adjusted at run-time and used to
evolve the specification S, but some of the KAOS concepts, and in particular
its formalism, have found their way into problem frames work.

4.5 Paraconsistent and Default Logics

Several requirements modeling approaches rely on formal logic explicitly
(KAOS also uses a formal temporal logic, but it is not the focus of the work
described above). Here we review two approaches.

Default logic approaches, appearing in [74] and [30], rely on David Poole’s
Theorist system [57] to define what must be (typically the World knowledge)
and what might change, represented by initial defaults. The connection to the
requirements model is two-fold: the selection of the order in which require-
ments are considered for revision, and the ability to ‘downgrade’ requirements
to default (preferred) status rather than ‘mandatory’ status. Default logic is
non-monotonic in that TOLD facts can later be contradicted and no longer
concluded; for example, the sentence “requirement R is refined by task T”
can be over-ruled if new information is discovered that says, for example, that
“requirement R has no refinements”. In classical logic, the original sentence
cannot be retracted.

Closely aligned with this perspective is the REFORM framework [30],
which identifies three main properties for a system managing evolution:

1. distinguish between what are called essential and tentative requirements;
2. make explicit the rationale for satisfying a requirement (refinements);
3. make explicit the tradeoffs for discarding a requirement when the require-

ments model changes.

Ghose et al. also define some useful principles for handling changes to the
requirements:



How requirements evolution influences software evolution 15

1. make minimal changes to the solution when the problem changes;
2. make it possible to ignore the change if the change would be more costly

than ignoring it;
3. support deferred commitment so that choosing a solution is not premature.
4. maintain discarded requirements to support requirements re-use.

They go on to implement these ideas in a proof-of concept system for
managing requirements. One issue to consider in such non-monotonic systems
for requirements is that reasoning from events to explanations is abductive,
and therefore in the NP-hard class of problems.

Another approach to managing change is to support paraconsistent rea-
soning, that is, reasoning in the presence of contradictory evidence without
trivially concluding everything, as in classical logic. This is vital in handling
evolving requirements since one common occurrence is that a fact previously
asserted is then found to be false. For example, we might say at time T0 we
must satisfy a requirement Rx, but at a later time, Tn, change our minds
(perhaps the stakeholders realized they did not need the requirement). In a
formal model we would have {Rx, ¬Rx}, a classical inconsistency.

In the RE domain, tolerating inconsistency is essential, for reasons listed
by Nuseibeh et al. [55]:

1. to facilitate distributed collaborative working;
2. to prevent premature commitment to design decisions;
3. to ensure all stakeholder views are taken into account;
4. to focus attention on problem areas [of the specification].

Hunter and Nuseibeh [36] use Quasi-Classical Logic (QCL), an approach
to reasoning in the presence of inconsistency which labels the formulas in-
volved. This also permits one to identify the sources of the inconsistency and
then, using their principle of “inconsistency implies action”, choose to act on
that information, by, for example, removing the last asserted fact, perhaps
using principles such as Ghose’s, above. An example from the London Ambu-
lance case has a scenario where, based on the information gathered, one can
derive both “dispatch Ambulance 1” and “do not dispatch Ambulance 1”.
Two useful capabilities emerge from labeled QCL: one can continue to derive
inferences not related to this inconsistency, for example, that Ambulance 2
needs a safety check; and secondly, to understand the chain of reasoning that
led to the inconsistency, and resolve it according to meta-level rules.

Paraconsistent reasoning (whether using defaults, QCL, or other ap-
proaches such as multiple-valued logics) supports evolving requirements by
mitigating the challenge of conflicting and possibly inconsistent specifica-
tions, whether in the World, Requirements, or Specification. While there are
computational complexity issue, practically speaking this is less of an issue
as processing speeds have increased.



16 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

4.6 Traceability Approaches

Traceability refers to the linkages between (in our case) requirements and
downstream artifacts such as code, models and tests. The importance of
traceability with respect to software evolution is to support the identifica-
tion and impact of the changes to the requirements. A number of current
approaches use traceability to manage requirements evolution.

In the work of Charrada and Glinz [19], outdated requirements are iden-
tified based on changes in the source which are believed to impact require-
ments. Such changes might, for example, include the addition of a new class
or method body, which is likely a new feature being added. This addresses the
issue of requirements drifting from the actual state of the source code. This
approach relies on machine learning techniques to identify statistically likely
candidates, which in general falls into the area of mining software reposi-
tories. The basic notion is to gather a large body of data, including source
code, requirements documents (if any), tests, emails, etc. Machine learning
techniques such as Latent Dirichlet Allocation can then be used to extract
interesting labels for that data, including which quality requirements are af-
fected, as in Hindle’s work. There is some promise in these approaches, but
the major stumbling block is to gather useful data in large enough volumes
(typically in the millions of records) that the statistical techniques will be suf-
ficiently accurate. As one might imagine, identifying requirements in source
code is tricky without a good set of requirements documents to go from.

Should sufficient data not be available, one is forced to leverage human
knowledge to a greater extent. Herrmann et al. [34] use the information about
the previous incarnation of the system to derive “delta requirements”, which
specify only those changes to the requirements necessary to implement the
system (we might think of this as the set represented by R1 \ R0). The
challenge with this approach is to correctly characterize the existing system’s
initial requirements.

Welsh and Sawyer [66] use traceability to identify changes that affect dy-
namically adaptive systems (DAS). They include five possible changes to a
DAS that might need to be accommodated:

• environmental change (a change to W)
• broken assumption (an incorrect fact in W)
• new technology (new elements in S)
• consequential change (changes to the inferences drawn from W,S ` R)
• user requirements change (changes to R)

Traceability techniques should somehow identify which type of change is
occurring and what implications that change has for the other elements of
the system. Welsh and Sawyer extend the i* strategic rationale framework
[71] to annotate the models with possible changes and impacts. The primary
contribution is to support elicitation and modelling.



How requirements evolution influences software evolution 17

4.7 Feature Models

Feature models are covered in greater detail in Chapter 3. Techniques for
dealing with changes to feature models, including the product lines which are
typically derived from the feature models, overlap with the management of
requirements evolution. Requirements researchers typically consider feature
models to focus on the user-oriented aspects of a system, i.e., be designed
with marketable units in mind. Requirements as we define them, however,
would consider non-functional properties of the system (which are not neces-
sarily user-oriented, such as maintainability) and features which may not be
relevant to product lines.

That being said, the techniques for managing evolution in feature models
are relevant to requirements evolution as well.

4.8 Summary

We said at the beginning of this chapter that managing evolving require-
ments could be broken down into elicitation and modeling and turning those
representations into software. Most of the approaches we discussed focus on
the modeling and analysis aspects of the problem. There is unfortunately
little work on taking the frameworks and applying them to industrial re-
quirements problems. Part of the challenge is that a lot of industries simply
do not manage requirements in a manner which would permit, for example,
delta requirements to be generated. Another is that academic tools for the
most part ignore the vastly different scale of industrial challenges (Daimler,
for example, has DOORS models with hundreds of thousands of objects).

An emerging trend in requirements evolution is the linkage to dynamic,
self-adaptive systems. Researchers are increasingly looking beyond the tradi-
tional staged lifecycle model where requirements are used to derive a specifica-
tion and then ignored. Instead, requirements, and other models, are believed
to be useful beyond the initial release of the software. Most of the research to
date has identified challenges and future work that must be dealt with before
we can realize the vision of “requirements at run-time”. For example, Welsh
and Sawyer [66], Ghose [30], and several others focus on understanding the
nature of the problem using classification techniques.

One of the seminal papers in characterizing evolutionary systems is that
of Berry et al. [13]. In it, the authors argue that for dynamically adaptive
systems requirements engineering is continuous. Systems must understand
what objectives are paramount at a given point in time, what constraints
exist, and how to act to achieve their objectives. They therefore argue for
four levels of adaptivity:

Level 1 Humans model the domain, W and possible inputs to a system S.



18 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

Level 2 The given system S monitors W for its inputs and then determines
the response. This is the domain of self-adaptive software research, such
as Epifani et al. [27] or Whittle et al. [67].

Level 3 Humans identify adaptation elements for the set of systems. This
is what variability modeling for goal models does, for example Dalpiaz et
al. [23].

Level 4 Humans elicit mechanisms for self-adaptation in general.

Berry et al.’s classification allows us to understand the general trajectory
for research into requirements evolution. It moves beyond level 1, which is
interested in inputs and outputs for a specific system, increasingly focusing
instead on adapting and evolving the software in situ, based on a set of obser-
vations and a formalism for responding to the inputs. Unknown unknowns,
the inputs not modeled for reasons of either cost or ignorance, will still bring
us back to level 1.

While this is encouraging in terms of software that will be more resilient,
one question that is commonly left unanswered in research is the issue of re-
sponsiveness. Particularly in formal analysis, we can quickly run up against
fundamental complexity results that render complete optimal solutions in-
feasible, since exponential algorithms seem to be the only alternative. While
the performance of such algorithms has improved with advances in inference
engines, processing speed and parallelization, it is very much an open ques-
tion as to how much analysis is possible, particularly in the ‘online’ scenario.
Hence, a number of researchers focus on incremental or partial approaches
to analysis. It is important to keep in mind how well the proposed evolved
design will work under realistic scenarios.

5 A Framework for Requirements Evolution

This section considers implementation-level strategies for managing Require-
ments Evolution Problems (REP). In our work, we represent requirements as
goals G according to goal-oriented requirements engineering [64]. With that
in mind, let us recall the definition of the Requirements Evolution Problem:

Problem statement: Given (i) goals G, domain knowledge W, and (ii) some cho-

sen existing solution S0 of tasks (i.e., one that satisfies W,S0 ` G), as well as (iii)

modified requirements (δ(G),δ(W),δ(T)) that include modified goals, domain knowl-
edge and possible tasks, produce a subset of possible specifications Ŝ to the changed

requirements problem (i.e., δ(W ), Ŝ ` δ(G)) which satisfy some desired property Π,

relating Ŝ to S0 and possibly other aspects of the changes.

We will store instances of these elements (i.e., a specific goal instance such
as “system will allow user registration”) in a knowledge base called REKB.
REKB knows about items stored within it, and that knowledge is leveraged
using operations. In [29] we discuss this in more detail, but the essential
operations (ASK questions in knowledge base parlance) include:



How requirements evolution influences software evolution 19

ARE-GOALS-ACHIEVED-FROM Answers True if a given a set of tasks in
REKB can satisfy a given set of goals. This is the “forward reasoning”
problem of Giorgini et al. [31].

MINIMAL-GOAL-ACHIEVEMENT The opposite of the first operation, REKB
discovers sets of tasks (if any) which minimally satisfy desired goals. This
is the (abductive) backward reasoning problem of Sebastiani et al. [59].

GET-MIN-CHANGE-TASK-ENTAILING This operation produces solutions
(if any) to the REP. Given an initial solution S and a set of desired goals,
find minimal sets of tasks which are non-dominated for some criterion of
minimality and satisfy the new requirements problem. The key idea is to
define what the minimality criterion might be for a new solution, which
we discuss below.

We concentrate on those changes which are unanticipated. By ‘unantici-
pated’ we mean that there exists no mechanism in the implementation speci-
fication S to accommodate these changes. This clearly positions the Require-
ments Evolution Problem as distinct from the Self Adaptation Problem. The
Self Adaptation Problem (SAP) is quite different from the REP. With re-
spect to the aspects of G, W, and S, the SAP is to accommodate changes
in D,G by creating a suitably adaptive Ŝ ab initio. In other words, unlike
the REP, self-adaptation approaches do not modify the implementation. It is
becoming clear, however, that with a suitably flexible framework and a wide
pool of services, an adaptive specification can be used to select services that
satisfy our changed goals or domain assumptions. Since these services can
be quite heterogeneous, there is a continuum between adapting and evolving.
The essential distinction is the extent to which the changes are anticipated.

There are two key concerns in the REP:

1. What do we do when new information contradicts earlier information?
This is the problem of requirements problem revision.

2. What solutions (sets of tasks) should we pick when the REKB has changed
and been revised? This is the problem of minimal solution selection.

We discuss these below, after introducing our motivating case study.

5.1 The Payment Card Industry Example

The Payment Card Industry Security Standards Council is an industry con-
sortium of payment card issuers, including Visa and Mastercard. This body
has responsibility for developing industry standards for securing cardholder
data. The data security standard (DSS) takes effect whenever a merchant pro-
cesses or stores cardholder data. The standard is updated every three years,
and there are three versions extant, which we have modeled for our case
study. Among the high level PCI-DSS requirements are goals of protecting
cardholder data, securing one’s network, and using access control measures.



20 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

We modeled a scenario where a football stadium was upgrading its pay-
ment card infrastructure. The stadium model captured had 44 nodes and 30
relations; the PCI-DSS had 246 goals, 297 tasks/tests, and 261 implications
(connections between goals and tasks). Our case study captured three gen-
eral circumstances of change: expansion, contraction, and revision, which we
focus on here.

Most of the changes to the PCI-DSS, particularly those smaller in scope,
are to clarify previous requirements or to amend erroneous or irrelevant re-
quirements. This is exactly why requirements evolution is a problem: as the
standard is implemented, it becomes clear which parts are unsuited to the
real-world problems of payment card security. Often, unfortunately, this evo-
lution occurs because a hacker discovered an unanticipated hole in the se-
curity. In some sense, the standard is always one step behind these attacks.
The following examples show how the standard was revised:

1. The 1.2 version of the standard required organizations to change security
keys (that is, electronic keys) annually. However, in some cases it became
clear that this was either too onerous, or too infrequent. The version 2.0 of
the standard therefore revised this requirement to ask that organizations
change keys according to best practices. Note the ambiguity in this last
phrase.

2. Similarly, previous versions of the standard asked organizations to use
cryptography. Cryptography means many things, however, so this was up-
dated to demand the use of strong cryptography. Consider the situation in
which we (as stakeholders) had decided to use a 56-bit encryption protocol
(which is easily broken). We now have to update this to a newer protocol,
such as Triple-DES. This switch may conflict with our choice of technology
from before, and requires us to drop support for a particular task (which
would otherwise lead to an inconsistency).

3. In previous iterations of the standard, secure coding guidelines had to be
followed, but only for web applications such as web pages. In the latest
version, this has been revised to demand these guidelines apply to all ap-
plications. Again, this might require our IT system to change coding prac-
tices, implement testing frameworks, or hire consultants to be consistent
with this revision.

We then applied the methodology described below to find solutions to
these revisions in a reasonable amount of time. This is what might occur if, for
example, an organization needed to understand what testing to carry out to
ensure compliance: the tasks the REKB identified using GET-MIN-CHANGE-
TASK-ENTAILING would correspond to the validation tests identified in the
PCI-DSS standard. More information on the case study is available in [29].



How requirements evolution influences software evolution 21

5.2 Methodological Guidance for Solving Unanticipated
Changes

Since the focus of the REP is changing systems, it behooves us to outline the
process by which these changes occur, as well as the impact the changes have
on the requirements problem. Fig. 1 outlines these steps in graphical form.

Implement
Software

Implement
Software

Requirements
Discovery

Map Speech 
Acts Goals

Tasks
Domain 

assumptions

Software 
Implementation

1a

Identify RE 
Modules

1b

Mark 
Implemented 

Tasks

2a Are Goals 
Achievable?

SAT

The	
  REKB

2b

Minimal Goal 
Achievement

UnSAT

3a

3b

Select Optimal 
Solution 

(using Preferred / 
Least Distant Metrics)

4

5

Monitor REKB 
and Update

6

Create/Update 
REKB

7

UnSAT

SAT

Revise

!

Self-
adaptive

Human-
guided

Were	
  Changes	
  Anticipated?

Fig. 1 A methodology for Requirements Evolution Problems

Step 1a. Elicit requirements from stakeholders and map the speech acts into
domain assumptions, goals, tasks, and attitudes. Define domain assumptions
that are relevant to the context of the particular company. For instance, if
one is working with payment processor (like Verifone) for the 1,200 termi-
nal soccer stadium, one will want to add the details of the Verifone-specific
constraints.
Step 1b. Identify relevant problem modules. In the case study this is the set
of applicable standards and regulations: the PCI-DSS, Sarbanes-Oxley, etc.
For example, the requirements 1 and 1.1 of the PCI DSS could be represented
as the mandatory goal G1: “Install and maintain a firewall configuration to pro-
tect cardholder data” and goal G1.1: “Establish firewall and router configuration
standards”, along with the domain assumption K1 : G1.1 → G1.
Step 2a. Identify existing implemented tasks and add to the REKB, marking
them as “implemented”. Rather than defining future tasks to be performed,
we need to check whether the requirements problem can already be satisfied.
In the first iteration, this is clearly unlikely, but in future iterations may be
possible.
Step 2b. These previously implemented tasks will be the initial input into
the ARE-GOALS-ACHIEVED-FROM operator. This step is essential to prevent
over-analysis: if we have a set of tasks that already solve the (new) problem,
just use those. This is where the difference between adaptation (existing
implementation solves the new problem) and evolution begins.



22 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

Step 3a. If no candidate solutions were discovered in Step 2, then we must
analyze the REKB using MINIMAL-GOAL-ACHIEVEMENT. We are presented
with sets of tasks S. In the case of the PCI-DSS, this means finding the sets
of tests which will satisfy the mandatory goals (and in particular, the goal
“comply with PCI DSS”).
Step 3b. If the model is not satisfiable, repeat the elicitation steps to revise
the REKB. This is the process of refining our REKB in order to solve the
Requirements Problem.
Step 4. Once we have a candidate solution, decide on a member of S using
decision criteria. There are two sets of criteria: one optimizes the static cri-
teria, i.e., maximize the number of preferred goals contained. The other set
minimize a distance function between existing tasks and new tasks. Here we
would make use of the previously implemented tasks for earlier versions of
the system implementation.
Step 5. Implement the initial solution to the Requirements Problem as RP1.
Step 6. Monitor the implementation, domain, and goals for changes. This
can be done using e.g., requirements monitors.
Step 7. Something has changed and the system can no longer satisfy our
mandatory goals. We must re-evaluate the Requirements Problem to find a
solution that will (RP2). Update the REKB and repeat from Step 2.

The diamond with exclamation mark reflects the key distinction between
a REP and a Self-Adaptation Problem. If the detected change (step 6) was
anticipated, then we can look to the current version of the REKB. Assuming
the design was properly instantiated, this ought to provide a new solution
from within the initial REKB. However, as with Berry et al. [13], if there is
no solution in the initial REKB, we must intervene as humans and revise the
REKB accordingly.

This is a high-level methodology: variants are possible, of course. For one,
we could select more than one solution in Step 4 in order to maximize flexi-
bility. Step 4 might also be expanded to reflect software product line devel-
opment.

5.3 Revising Requirements

We mentioned that one of the key concerns in the REP is how to manage
new information which contradicts existing information. Step 2a of the REP
methodology is predicated on revising the REKB when new information is
found (assuming the REKB and its revision are consistent). The concept of
belief revision in artificial intelligence, especially the so-called AGM princi-
ples [1], closely parallels the concept of REKB revision. And yet, there are
important distinctions that mean that we do not accept the AI belief revision
literature in its entirety for the Requirements Evolution Problem.

There are three key principles in belief revision.



How requirements evolution influences software evolution 23

1. The use of epistemic entrenchment to partially order the formulae, in order
to decide which to do away with when revising the belief set;

2. The principle that the “new information” φ ought to be retained in the
revised belief set;

3. Gathering/learning information is expensive, and so should be discarded
only if necessary (minimal mutilation or information economy).

The problem with these principles for the REKB is that a) we are dealing with
three distinct SORTs of wffs (namely, goals, tasks and domain assumptions)
and b) our central concern is solving the requirements problem. This last
criteria distinguishes this type of revision: the concern for classical revision is
the state of an agent’s beliefs (e.g., that it is raining rather than sunny). In
the requirements problem, however, the concern is how best to incorporate
the new information in order to solve the revised requirements problem. In
this formulation, the new information may in fact be rejected, whereas in
AGM revision, this is never the case.

Consider the case where we as designers are told that the stakeholders
have a new goal to support VISA’s touchless card readers8. The AGM belief
revision postulates would have us accept this new fact on principle (using the
notion of recent information being dominant over older information). This is
intuitive in the knowledge representation problem, where we are dealing with
facts in the world. But in the design problem, preferring recent information
is not always the correct approach. Before accepting the new information we
must understand the implications, with respect to solving the requirements
problem, of acceptance. Consider the case where a meeting scheduler already
supports the goal of “managing schedules automatically”. If the designers
are told a new customer goal is to “allow users to enter information in a
paper organizer”, we can see there is a conflict, which implies the REKB
must be revised (absent paraconsistent reasoning). AGM postulates would
say that the new goal is paramount, and that the old goal is rejected (or a
workaround devised). In a design situation, however, this new goal may be
illogical, and should itself be rejected. In this situation the best we can do is
ask for preferences between these conflicting goals. We reject it not because
it imperils the current solution, but because it conflicts with other goals in
the sense that we cannot solve them simultaneously.

This leads to a new definition of revision in the REKB formulation of the
requirements problem. When domain assumptions change, since these are
invariant by definition, we apply standard belief revision operators to those
wffs. For example, if previously we had believed that “50% of the clientele
possess touchless credit cards”, and after monitoring sales for a few months,
our statistics inform us that the figure is closer to “90%”, it seems intuitive
to accept the new information. Nonetheless, our domain assumptions are
ordered using an epistemic entrenchment relation.

8 A touchless card reader is referred to as PayPass or PayWave, and does not require a

swipe or insertion for low-value transactions.



24 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

For goals and tasks, we have broad freedom to reject changes. Our moti-
vation for deciding on the particular revision to accept is with respect to the
requirements problem. We prefer a new state of the REKB that brings us bet-
ter solutions. The definition of ‘better’ solution will be defined with respect to
the distance function we use in GET-MIN-CHANGE-TASK-ENTAILING. This
means that even if stakeholders inform us of new tasks that have been im-
plemented, or new goals they desire, we may reject these revisions if they do
not lead to a better solution. This might be the case if, as with the previous
example, stakeholders tell us that they have upgraded the payment terminals
to accept touchless payments. It may be that this is now possible, but still
does not satisfy other goals in our REKB. This ability to reject the most cur-
rent revision, unlike classical belief revision, means that revising requirements
problems is properly aligned with our definition of the REKB as a support
mechanism for design decisions.

5.4 Selecting Non-Dominated Solutions

The second challenge in requirements evolution was deciding what solutions
to select when the REKB has changed and been revised. Recall the GET-MIN-
CHANGE-TASK-ENTAILING operator takes a set of goals (the mandatory
goals) and a set S of tasks, the old implementation, and returns a set of
sets of tasks which are equally desirable (non-dominated) solutions to the
requirements problem with respect to a distance function. The important
consideration in choosing new solutions is the choice of distance function, so
let us examine some possible choices.section could

probably be
spiced up with
case study exam-
ples.

Requirements re-use is important, so we do not want to completely ignore
previous implementations. So what criteria are important in selecting this
new solution? We defined several properties Π in [29], together with illustra-
tive examples based on a case where: S0 = {a, b, c, d, e} was the initial solution
(the set of tasks that were implemented); and S1 = {f, g, h}, S2 = {a, c, d, f}
and S3 = {a, b, c, d, f} are minimal sets of tasks identified as solutions to the
new requirements:

1. The standard solutions: this option ignores the fact that the new problem
was obtained by evolution, and looks for solutions in the standard way. In
the example, one might return all the possible new solutions {S1, S2, S3},
or just the minimum size one, S1.

2. Minimal change effort solutions: These approaches look for solutions Ŝ
that minimize the extra effort Ŝ − S0 required to implement the new
“machine” (specification). In our view of solutions as sets of tasks, Ŝ −S0

may be taken as “set subtraction”, in which case one might look for (i)
the smallest difference cardinality | Ŝ − S0 | (S2 or S3 each require only
one new task to be added/implemented on top of what is in S0); or (ii)
smallest difference cardinality and least size | Ŝ | (S2 in this case).



How requirements evolution influences software evolution 25

3. Maximal familiarity solutions: These approaches look for solutions Ŝ that
maximize the set of tasks used in the current solution, Ŝ ∩ S0. One might
prefer such an approach because it preserves most of the structure of the
current solution, and hence maximizes familiarity to users and maintainers
alike. In the above example, S3 would be the choice here.

4. Solution reuse over history of changes: Since the software has probably
undergone a series of changes, each resulting in newly implemented task
sets S1

0 , S
2
0 , ..., S

n
0 , one can try to maximize reuse of these (and thereby

even further minimize current extra effort) by using
⋃

j S
j
0 instead of S0

in the earlier proposals.

The above list makes it clear that there is unlikely to be a single optimal
answer, and that once again the best to expect is to support the analyst in
exploring alternatives.

5.5 Summary

This framework supports the iterative ‘exploration’ of one’s requirements,
domain knowledge, and solution. As analysts, one can ASK questions of
the REKB and understand how complete or accurate the solution will be.
Furthermore, using GET-MIN-CHANGE-TASK-ENTAILING, iterating and in-
crementing the solution itself, particularly in response to change, happens
continuously, as new information is added to the REKB.

In addition to the methodology, we also need to track and version our
artifacts using version control like metaphors (e.g., diff, checkin, etc.). We
would also like our REKB to be scalable to models of reasonable size: in a
related paper [29], we showed incremental reasoning was possible ‘online’,
i.e., in less than 10 seconds.

6 Conclusions

In this chapter, we have made the point that focusing solely on implemen-
tation artifacts is insufficient. It is the requirements which are providing the
guidance for maximizing stakeholder value, and so understanding, modeling,
and reasoning about evolving requirements is extremely important. We dis-
cussed how research in software evolution led to research in requirements
evolution, and showcased some of the industrial and academic approaches to
managing requirements evolution. The previous section on the REKB defined
our approach to the requirements evolution problem: that of incremental
exploration of the problem space using the REKB as a form of workbench.
Since we expect our system to be subject to change pressures, and constantly



26 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

evolving, supporting exploration allows both an initial problem exploration,
as well as a revision when something previously established changes.

The vision for managing the REP is increasingly growing closer to the
vision of adaptive software systems. In both cases, we would like to support
rapid and assured changes to a software system, preferably without human
intervention. To date, the primary difference is in which artifacts are in focus.
For requirements at run-time, the requirements model is viewed as the driver
of system understanding. At runtime we need to monitor how the system
is doing with respect to its requirements. This is best done by comparing
the execution (trace) to a runtime version of requirements, rather than a
runtime model of the implementation. The implementation is responsible for
the actual system. However, in answering questions about how the system is
performing, e.g. with respect to quality attributes or high-level goals, one can
only answer these questions (directly anyway) by understanding the state of
execution of requirements. Requirements evolution is a complex problem, but
supporting incremental and iterative analysis of the requirements model will
help us in making software in general more adaptable and efficient.

References

1. Alchourrón, C. E., Gärdenfors, P., and Makinson, D. On the Logic of Theory

Change: Partial Meet Contraction and Revision Functions. Journal of Symbolic Logic
50, 2 (1985), 510–530.

2. Ali, R., Dalpiaz, F., Giorgini, P., and Souza, V. E. S. Requirements Evolution:

From Assumptions to Reality. In International Conference on Exploring Modeling
Methods in Systems Analysis and Design (London, 2011), pp. 1–10.

3. Alspaugh, T. A., Faulk, S. R., Britton, K. H., Parker, R. A., Parnas, D. L.,

and Shore, J. E. Software Requirements for the A-7E Aircraft. Tech. rep., 1992.
4. Ambler, S. W. Examining the “Big Requirements Up Front (BRUF)” Approach.

Tech. rep., 2006.

5. Anderson, D. J. Kanban. Blue Hole Press, 2010.
6. Anderson, S., and Felici, M. Controlling Requirements Evolution: An Avionics

Case Study. In International Conference on Computer Safety, Reliability and Security

(Rotterdam, 2000), F. Koornneef and M. van Der Meulen, Eds., p. 0.
7. Anderson, S., and Felici, M. Requirements Evolution: From Process to Product

Oriented Management. In International Conference on Product Focused Software

Process Improvement (Kaiserslautern, Germany, 2001), pp. 27–41.
8. Antón, A. I. Goal-Based Requirements Analysis. In Int. Conf. on Req. Engineering

(Colorado Springs, Colorado, 1996), pp. 136–144.
9. Antón, A. I., and Potts, C. Functional paleontology: system evolution as the user

sees it. In Int. Conf. on Software Engineering (Toronto, Canada, 2001), pp. 421–430.

10. Aranda, J., Easterbrook, S. M., and Wilson, G. V. Requirements in the wild:
How small companies do it. In Int. Conf. on Req. Engineering (Delhi, India, 2007).

11. Basili, V., and Perricone, B. T. Software Errors and Complexity: An Empirical

Investigation. Commun. ACM 27 (1984), 42–52.
12. Belady, L. A., and Lehman, M. M. A model of large program development. IBM

Systems Journal 3 (1976), 225–252.



How requirements evolution influences software evolution 27

13. Berry, D. M., Cheng, B. H. C., and Zhang, J. The Four Levels of Requirements

Engineering for and in Dynamic Adaptive Systems. In International Conference on
Requirements Engineering: Foundation for Software Quality (Porto, Portugal, 2005),

pp. 113–120.
14. Boehm, B. A Spiral Model of Software Development and Enhancement. IEEE Com-

puter 21, 5 (1988), 61–72.
15. Brand, S. How Buildings Learn: What Happens After They’re Built. Viking Press,

1995.
16. Brooks, F. P. The mythical man-month, 1st ed. Addison Wesley, Reading, Mass.,

1975.
17. Bubenko, J. A. Information modeling in the context of system development. In IFIP

Congress (1980), pp. 395–411.
18. Chapin, N., Hale, J. E., Fernandez-Ramil, J. C., and Tan, W.-G. Types of soft-

ware evolution and software maintenance. Journal of Software Maintenance and Evo-

lution: Research and Practice 13, 1 (2001), 3–30.
19. Charrada, E. B., Koziolek, A., and Glinz, M. Identifying outdated requirements

based on source code changes. In Int. Conf. on Req. Engineering (Chicago, IL, June

2012).
20. Chung, L., Mylopoulos, J., and Nixon, B. A. Representing and Using Nonfunc-

tional Requirements: A Process-Oriented Approach. Trans. Soft. Eng. 18 (1992),

483–497.
21. Chung, L., Nixon, B. A., and Yu, E. S. Dealing with change: An approach using

non-functional requirements. Requirements Engineering J. 1, 4 (1996), 238–260.
22. Cockburn, A. Using both incremental and iterative development. STSC CrossTalk

21, 5 (2008), 27–30.
23. Dalpiaz, F., Giorgini, P., and Mylopoulos, J. An Architecture for Requirements-

Driven Self-reconfiguration. In International Conference Advanced Informations Sys-

tems Engineering (Amsterdam, 2009), pp. 246–260.
24. Dardenne, A., van Lamsweerde, A., and Fickas, S. Goal-directed requirements

acquisition. Science of Computer Programming 20, 1-2 (1993), 3–50.
25. Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., and Rifaut, A. A knowledge

representation language for requirements engineering. Proceedings of the IEEE 74
(1986), 1431–1444.

26. Easterbrook, S. M., and Nuseibeh, B. A. Managing inconsistencies in an evolving

specification. In Int. Conf. on Req. Engineering (York, England, 1995), pp. 48–55.
27. Epifani, I., Ghezzi, C., Mirandola, R., and Tamburrelli, G. Model evolution by

run-time parameter adaptation. International Conference on Software Engineering

(2009), 111–121.
28. Ernst, N. Software Evolution: A Requirements Engineering Approach. PhD thesis,

University of Toronto, 2012.
29. Ernst, N., Borgida, A., and Jureta, I. Finding Incremental Solutions for Evolving

Requirements. In Int. Conf. on Req. Engineering (Trento, Italy, Feb. 2011), pp. 15–24.
30. Ghose, A. K. Formal tools for managing inconsistency and change in RE. In Inter-

national Workshop on Software Specification and Design (2000), pp. 171–181.
31. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., and Sebastiani, R. Formal Rea-

soning Techniques for Goal Models. Journal on Data Semantics 2800 (2003), 1–20.
32. Greenspan, S., Mylopoulos, J., and Borgida, A. Capturing more world knowledge

in the requirements specification. In Int. Conf. on Software Engineering (Tokyo,
1982), pp. 225–234.

33. Harker, S. D. P., Eason, K. D., and Dobson, J. E. The change and evolution of

requirements as a challenge to the practice of software engineering. In Int. Conf. on

Req. Engineering (1993), pp. 266–272.
34. Herrmann, A., Wallnöfer, A., and Paech, B. Specifying Changes Only – A Case

Study on Delta Requirements . In International Conference on Requirements Engi-

neering: Foundation for Software Quality (Amsterdam, Apr. 2009), pp. 45–58.



28 Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos

35. Hindle, A., Bird, C., Zimmermann, T., and Nagappan, N. Relating Requirements

to Implementation via Topic Analysis: Do Topics Extracted from Requirements Make
Sense to Managers and Developers? In International Conference on Software Main-

tenance (Trento, Italy, 2012), pp. 1–12.

36. Hunter, A., and Nuseibeh, B. A. Managing inconsistent specifications: reasoning,
analysis, and action. ACM Transactions on Software Engineering and Methodology

7, 4 (1998).

37. IEEE Software Engineering Standards Committee. IEEE Recommended Prac-
tice for Software Requirements Specifications. Tech. rep., 1998.

38. Jackson, M. Problem Frames: Analysing & Structuring Software Development Prob-
lems. 2000.

39. Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., and Robinson, W. N.

The Brave New World of Design Requirements: Four Key Principles. In International
Conference Advanced Informations Systems Engineering (Hammaret, Tunisia, 2010),

pp. 470–482.

40. Jureta, I. J., Borgida, A., Ernst, N., and Mylopoulos, J. Techne: Towards a
New Generation of Requirements Modeling Languages with Goals, Preferences, and

Inconsistency Handling. In Int. Conf. on Req. Engineering (Sydney, Australia, 2010),

pp. 115–124.
41. Jureta, I. J., Mylopoulos, J., and Faulkner, S. Revisiting the Core Ontology and

Problem in Requirements Engineering. In Int. Conf. on Req. Engineering (Barcelona,

2008), pp. 71—-80.
42. Lam, W., and Loomes, M. Requirements Evolution in the Midst of Environmental

Change: A Managed Approach. In Euromicro Conference on Software Maintenance
and Reengineering (Florence, Italy, 1998), pp. 121–127.

43. Lapouchnian, A., and Mylopoulos, J. Modeling Domain Variability in Require-

ments Engineering with Contexts. In International Conference on Conceptual Mod-
elling (Gramado, Brazil, 2009), pp. 115–130.

44. Leffingwell, D., and Widrig, D. Managing Software Requirements: A Use Case

Approach, 2nd ed. Addison-Wesley Professional, 2003.
45. Lehman, M. M., and Fernandez-Ramil, J. C. Software evolution. In Software

Evolution and Feedback: Theory and Practice, N. H. Madhavji, J. C. Fernandez-Ramil,

and D. E. Perry, Eds. Wiley, 2006, pp. 7–40.
46. Letier, E., and van Lamsweerde, A. Reasoning about partial goal satisfaction for

requirements and design engineering. In International Conference on Foundations of

Software Engineering (Newport Beach, CA, 2004), ACM Press, pp. 53—-62.
47. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E. S., and Mylopoulos, J. On Goal-

based Variability Acquisition and Analysis. In Int. Conf. on Req. Engineering (Min-
neapolis, Minnesota, 2006).

48. Massacci, F., Nagaraj, D., Paci, F., Tran, L. M. S., and Tedeschi, A. Assessing

a requirements evolution approach: Empirical studies in the Air Traffic Management
domain. In Empirical RE workshop at RE (Chicago, 2012), pp. 49–56.

49. McDonald, C. From Art Form to Engineering Discipline?: A History of US Mil-

itary Software Development Standards, 1974-1998. IEEE Annals of the History of
Computing 32, 4 (2010), 32–45.

50. Mens, T. Future Research Challenges in Software Evolution. In Presentation to
ERCIM Working Group on Software Evolution (Brussels, Sept. 2009), pp. 1–17.

51. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., and Jaza-

yeri, M. Challenges in Software Evolution. Joint ERCIM Workshop on Software Evo-

lution and International Workshop on Principles of Software Evolution (Dec. 2005),
13–22.

52. Mylopoulos, J. The Requirements Problem Revisited. In Presentation to IFIP
Working Group 2.9 (Cancun, 2011).



How requirements evolution influences software evolution 29

53. Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M. Telos: Representing

Knowledge About Information Systems. ACM Transactions on Information Systems
8 (1990), 325–362.

54. Navarro, I., Leveson, N., and Lunqvist, K. Semantic decoupling: reducing the

impact of requirement changes. Requirements Engineering J. 15, 4 (2010), 419–437.
55. Nuseibeh, B. A., Easterbrook, S. M., and Russo, A. Making inconsistency re-

spectable in software development. Journal of Systems and Software 58, 2 (2001),

171–180.
56. Parnas, D. L. Software Aspects of Strategic Defense Systems. Commun. ACM 28

(1985), 1326–1335.
57. Poole, D. A logical framework for default reasoning. Artificial Intelligence 36, 1

(1988), 27–47.

58. Qureshi, N. A., Jureta, I. J., and Perini, A. Requirements Engineering for Self-
Adaptive Systems : Core Ontology and Problem Statement. In International Confer-

ence Advanced Informations Systems Engineering (London, 2011), pp. 1–15.

59. Sebastiani, R., Giorgini, P., and Mylopoulos, J. Simple and Minimum-Cost Sat-
isfiability for Goal Models. In CAISE (Riga, Latvia, 2004), pp. 20–35.

60. Sommerville, I., and Sawyer, P. Requirements Engineering: A Good Practice Guide.

Wiley, New York, NY, USA, 1997.
61. Swanson, E. B. The dimensions of maintenance. In Int. Conf. on Software Engineer-

ing (San Francisco, California, 1976), pp. 492–497.

62. Tun, T. T., Trew, T., Jackson, M., Laney, R., and Nuseibeh, B. A. Specifying
features of an evolving software system. Software - Practice and Experience 39, 11

(2009), 973–1002.
63. Tun, T. T., Yu, Y., Laney, R., and Nuseibeh, B. A. Recovering Problem Structures

to Support the Evolution of Software Systems. Tech. rep., Milton Keynes, 2008.

64. van Lamsweerde, A. Goal-Oriented Requirements Engineering: A Guided Tour. In
Int. Conf. on Req. Engineering (Toronto, 2001), pp. 249–263.

65. van Lamsweerde, A., and Letier, E. Handling obstacles in goal-oriented require-

ments engineering. Trans. Soft. Eng. 26 (2000), 978–1005.
66. Welsh, K., and Sawyer, P. Requirements Tracing to Support Change in Dynamically

Adaptive Systems. International Conference on Requirements Engineering: Founda-

tion for Software Quality (Apr. 2009), 59–73.
67. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H. C., and Bruel, J.-M. RE-

LAX: Incorporating Uncertainty into the Specification of Self-Adaptive Systems. In

Int. Conf. on Req. Engineering (Atlanta, 2009), pp. 79–88.
68. Wiegers, K. E. Software Requirements. Microsoft Press, 2003.

69. Wnuk, K., Regnell, B., and Karlsson, L. What Happened to Our Features? Vi-
sualization and Understanding of Scope Change Dynamics in a Large-Scale Industrial

Setting. In Int. Conf. on Req. Engineering (2009), IEEE, pp. 89–98.

70. Xue, Y., Xing, Z., and Jarzabek, S. Understanding Feature Evolution in a Family
of Product Variants. In Working Conference on Reverse Engineering (2010), IEEE,

pp. 109–118.

71. Yu, E. S. Towards modelling and reasoning support for early-phase requirements
engineering. In Int. Conf. on Req. Engineering (Annapolis, Maryland, 1997), pp. 226–

235.
72. Yu, Y., Tun, T. T., Tedeschi, A., Franqueira, V. N. L., and Nuseibeh, B. A.

OpenArgue: Supporting argumentation to evolve secure software systems. In Int.

Conf. on Req. Engineering (Trento, 2011), IEEE Computer Society.

73. Zave, P., and Jackson, M. Four Dark Corners of Requirements Engineering. ACM
Transactions on Software Engineering and Methodology 6 (1997), 1–30.

74. Zowghi, D., and Offen, R. A Logical Framework for Modeling and Reasoning about
the Evolution of Requirements. In Int. Conf. on Req. Engineering (1997), pp. 247–257.


	How requirements evolution influences software evolution
	Neil Ernst and Alexander Borgida and Ivan J. Jureta and John Mylopoulos
	The importance of requirements in software evolution
	The Requirements Problem

	Historical Overview of Requirements Evolution
	From Software Evolution to Requirements Evolution
	Empirical Studies of Requirements Evolution

	A Survey of Industry Approaches
	Standards and Industry
	Requirements Management Tools
	Task Managers
	Summary

	Recent Research
	Problem Frames Approach
	Extensions of the NFR Framework
	Run-time Adaptive Requirements
	KAOS-based Approaches
	Paraconsistent and Default Logics
	Traceability Approaches
	Feature Models
	Summary

	A Framework for Requirements Evolution
	The Payment Card Industry Example
	Methodological Guidance for Solving Unanticipated Changes
	Revising Requirements
	Selecting Non-Dominated Solutions
	Summary

	Conclusions
	References



