
Techne: A Family of Multityped Formalisms

for the Resolution of Requirements Problems

Jureta, Borgida, Mylopoulos

June 2, 2011

Abstract

A family of mathematical formalisms, called Techne, is introduced
for the definition of requirements problems and the design, comparison,
and ranking of their solutions. Starting from a very simple formalism,
features of every subsequent formalism are incrementally added, motivated,
illustrated, syntax and semantics are defined, and relationships to past
work reviewed. It is argued that, and illustrated how Techne integrates
many important ideas from past research on formalisms for modeling and
reasoning in requirements engineering. Techne formalisms neither originate
in, nor are specific to the engineering of software systems.
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1 Introduction

The requirements problem states the purpose to be achieved and the constraints
to be maintained by a system-to-be. A solution defines how the system-to-be
shall do so and under what assumptions.

Central aims of requirements engineering (re) as a field of research include
making and evaluating ontologies, formalisms, and methodologies for the acquisi-
tion, interpretation, clarification, organization, archival, analysis, and validation
of information needed to define the requirements problem and its alternative
solutions, and to compare and rank these alternatives. Once one solution is
chosen, several subsequent activities can begin, including software engineering, to
produce the detailed specification of the solution’s automated parts as a blueprint
for the production and/or selection of the software parts of the system-to-be.

Once a requirements problem reflects issues in the interaction and coordina-
tion of people and machines, solutions will rarely be reducible only to software.
While this clearly places re outside software engineering, re has been struggling
to produce formalisms which both follow best practices in notation engineering
and are designed specifically for the structuring of the requirements problem
and solution space. This is best reflected in oft-cited formalisms for re which
have been constructed by reuse of formal methods in software engineering.

This paper introduces a family of formalisms, called Techne, designed from
grounds-up specifically for the representation and reasoning about requirements
problems, alternative solutions, and for the comparison and ranking of alterna-
tives. Techne departs in several respects from prior research on the design of
formalisms in re and from formal methods in software engineering:

1. Propositional language. In every Techne formalism, the smallest unit
of information is a natural language proposition so that the language
of every Techne formalisms is propositional. This is in contrast to a
(ground) predicate over object instances as in formal methods for software
engineering [7] and in various oft-cited formalisms for re (e.g., [9, 11]).
Reasons for this design decision include the following:

• Modeling workload: Natural language information obtained from
stakeholders may suggest many alternative solutions, each of which
needs to be defined, compared, and ranked. (E.g., consider how many
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various ways can be imagined over a brainstorming session to secure
access to an e-banking system, and note how there is no single way
that is being adopted from one bank and country to another.) Many
alternatives will end up being rejected after they are compared over
various feasibility, usability, marketing, or other criteria. It seems
very hard to justify the resource and expertise investment needed to
define each of these alternatives in a predicate formalism.

• Software reuse: The general principle that reuse is a good practice
means that the requirements problem and solution space will often be
constrained by the knowledge of functionalities in available solutions,
even if those solutions were intended for different requirements prob-
lems. Descriptions of existing solutions tend to be in given natural
language, and the existence of the solution suggest no need (unless
reengineering is an aim) to use a predicate formalism and sophisticated
refinement operations thereon.

• Uncertainty: Alternative solutions refer to conditions in the future. It
is difficult to be precise about such conditions. The more one wants
to be precise, the more the expressive power of predicate formalisms
becomes relevant. Using a predicate formalism to structure the
problem and solution space thus means wanting to be precise about
alternatives which are only roughly known.

• Decision postponement: The more expressive a formalism, the more
decisions it expects from the modeler. E.g., using a temporal logic
requires that decisions are made about the temporal relations between
conditions referred to in statements. A predicate formalism asks one
to decide about the variables in the domain, and therby about classes
of objects in it. Choosing appropriate classes and their relations
for each alternative solution does not seem relevant given that one
solution will be chosen.

• Decision authority: Stakeholders of the system-to-be choose the
solution. In order to understand alternatives and make their decision,
the solutions ought to be described to them in a formalism where
the language remains readable. It is not reasonable to assume that
training in using predicate formalism can always be done, or that it
will always be accepted, even if seemingly necessary.

Techne recognizes that the common form of information about require-
ments problems and solutions are natural language statements. An aim
in making Techne was to show the variety of relevant analyses that can
be performed over propositions that remain intuitively understandable to
various stakeholders, before (and regardless of whether) these statements
are rewritten as formulae over predicates in a software specification.

2. Types. Every Techne formalism has a set of special expressions which
influence the roles that propositions can take in relations to other proposi-
tions and within the requirments problem and solution space. Each such
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expression gives a type over propositions. E.g., the expression “it is a goal
that p”, where p is a proposition, is stated by adding the superscript G
and writing pG in various Techne formalisms, which reads “it is a goal that
proposition p”.1

3. Multiple orthogonal types. Some Techne formalisms have several sets of
types, such as the sets of core (e.g., “it is a goal that”, “it is a task to”),
optionality (e.g., “it is mandatory that”, “it is preferred that”), and agency
types (e.g., “it is role x’s responsibility to”). These different sets of types
are orthogonal, in that no combination of them is explicitly forbidden,
although some are discouraged.

4. Formality. A Techne formalism is (i) a formal (multi)typed formalism
together with (ii) a language to write criteria for the comparison of, and
decision rules for the ranking of alternative solutions to requirements
problems, (iii) a database of expressions of these languages, and (iv) an
interface to the database used to add to, remove from, and otherwise
modify the database. By formalism is meant a formal language and a set
of associated tools to manipulate its sentences, all of which are explained
later on (cf., §3).

5. Different formalisms for different needs. The progression from the simplest
Techne formalism to more complex ones is a progression from a small to a
large set of types on, and relations between propositions. Starting from the
simplest Techne formalism, every more complicated one is defined by adding
features to a simpler formalism. Apart from facilitating presentation and
discussion, this serves to show that each Techne formalism has its merits
as a standalone formalism: the decision on which to use will depend on
the tradeoff between the amount of information to enter into the database
and the variety of questions that one wants the database to answer.

6. Different problem and solution concepts. Every Techne formalism comes
with (i) a definition of the requirements problem that can be specified
and resolved with that formalism, and (ii) the list of properties that
every candidate solution specified in that formalism should satisfy. The
progression from one formalism to the next is a progression from less to
more detailed problem and solution concepts. The progression illustrates
how simpler formalisms obscure information that other formalisms allow
to be specified and analyzed. E.g., some formalisms cannot show agents’
responsibilities over tasks, goals, or otherwise, while these same concerns
can be specified in other Techne formalisms.

Starting from the simplest Techne formalism, features of every subsequent

1The informal reading of types in Techne may suggest that they resemble modalities. They
are, however, not modalities in the same sense as necessity and possibility are modalities in
modal logic, because, among others, nesting is not allowed in Techne (e.g., there is no Techne
formalism which formalizes the statement “it is a goal that a task p”).
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formalism are incrementally added, motivated, illustrated, syntax and semantics
are defined, and relationships to past work reviewed.

It is shown in this paper that various Techne formalisms synthesize in a
coherent and precise way various ideas introduced separately in prior work on
specification languages for requirements problems and solutions, including:

• concepts, such as goal, softgoal, quality requirement, domain assumption,
task, agent, role, plan, roadmap, adaptation requirement ;

• binary or n-ary relations, including refinement, means-ends, decomposition,
approximation, conflict, obstruction, preference, dependency, contribution,
commitment, relaxation, responsibility, ability ;

• unary relations, such as mandatory, preferred ; and

• rules of what is an appropriate refinement of some requirement, what is an
appropriate approximation of a quality requirement, and so on.

Four aims are pursued in making and presenting Techne:

• Theory building: Techne aims to help establish the theoretical bases of
formalisms for the representation of, and reasoning about requirements
problems and solutions, or in other words, a theory of knowledge repre-
sentation and reasoning in requirements engineering. The very basic and
crucial departure from related work, which is necessary towards this aim, is
no longer to combine contributions from other fields without significantly
specializing them to specification of requirements problems and solutions.
Instead, every Techne formalism is designed in such a way that every-
thing in the formalism is closely integrated: the syntax, semantic domain,
and semantic mapping, the structure of the database, the constraints on
changes of the database, and the behavior of the database interface are all
defined to reflect the basic intuitions suggested and developed over time in
requirements engineering.

• Synthesis & simplification: An important result of Techne is that it carries
over to a propositional formalism many important prior contributions made
in the context of predicate logic-based formalisms for re and software
engineering. This results in very precise distinctions between primitive
concepts and relations, and derived concepts and relations which are are
defined through combinations of primitives. It is hoped that this simplifies,
to colleagues and practitioners, the reading, use, and reviewing of past
and future research on, and the teaching of the structuring and analysis of
requirements problem and solution spaces.

• Study & bridging of the informal/formal gap: Natural language propositions
are the smallest unit of information in every Techne formalism. Moreover,
every Techne formalism is defined by incrementally adding features to a
simpler Techne formalism. These two design principles make Techne into
a study of how to transform information about requirements problems
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and solutions from natural language statements to, as needed, increasingly
structured (with every more complex Techne formalism) representations,
until software specification by formal methods can take over.

• Formalism design: Design choices and tradeoffs made in designing every
Techne formalism are discussed, to facilitate the reading of this paper as a
case study in the design of formalisms. Increasing specialization of knowl-
edge and systems favors a future in which no single (family of) formalisms
will be judged adequate for most problems, making specific formalisms less
interesting than the principles to apply when making formalisms. Techne
is an illustration of some such principles.

This paper has two parts. The first part goes over preliminaries: (i) design
principles and assumptions that were followed in designing every Techne formal-
ism are discussed and contrasted to related research (§2); general components
of, and their roles in a formalism are presented (§3); a running example is intro-
duced (§4). The second part of the paper presents several Techne formalisms, T1
(§5)–T5 (§9), each having the components summarized in Table 1. The paper
ends with a case study where Techne is applied.

2 Design Principles & Related Work

Design principles that were followed to make Techne resulted in departures
from considerable prior research on specification languages and specification
organization on requirements problems and solutions. They are discussed in this
section. Related work is revisited in more detail when every Techne formalism is
presented, in the second part of the paper. The reader interested only in the
detail of the Techne formalisms can safely skip this section.

2.1 Design the Formalism to Fit the Problem Structure

A specification language should – by design – reflect assumptions about the
structure of requirements problem and their solutions. There are two lines of
research in which this is not the case. To see why/how, consider this very simple
idea: to think about the system-to-be, it is useful to distinguish what is expected
of it, from how it will deliver it. Say that Y somehow says the former, and X
the latter. One would consequently want to check at some point if the following
holds:

Whenever X, then also Y. (2.1)

It is necessary to check this in the engineering of any system-to-be: it is thereby
a piece of knowledge that should be part of a formalism for re.

Formal methods such as vdm [6], z [30], Larch [14], or b [1] incorporate
mechanisms to decompose the requirements problem into subproblems, then
recompose solutions to subproblems into a solution of the original problem. While
certainly very relevant, these mechanisms (e.g., schemas and ways to combine
them in z, traits in Larch) are orthogonal to, or equivalently, independent from,

7



Table 1: Overview of the Techne formalisms according to their components;
Symbol “•” reads “present”, “◦” reads “absent”.

Components Formalisms
T1 T2 T3 T4 T5
(§5) (§6) (§7) (§8) (§9)

Core
modalities

Goal • • • • •
Domain assumption • • • • •
Task • • • • •
Quality constraint ◦ ◦ ◦ ◦ •
Softgoal ◦ ◦ • • •
Soft dom. assumpt. ◦ ◦ • • •

Optionality
modalities

Mandatory ◦ ◦ ◦ • •
Preferred ◦ ◦ ◦ • •
Inherited ◦ ◦ ◦ • •

Agency
modalities

Agent ◦ • • • •
Role ◦ • • • •

Primitive
relations

Inference • • • • •
Conflict • • • • •
Responsibility ◦ • • • •
Ability ◦ • • • •
Occupancy ◦ • • • •
Commitment ◦ • • • •
Preference ◦ ◦ • • •

Variables
Binary Boolean • • • • •
Rational ◦ ◦ ◦ ◦ •

any conceptualization of requirements problems, and therefore independent from
our distinction between X and Y above. In other words, while a formal method
can be used to check a condition such as Eq.2.1, it does not say that one should
check such a condition.

That formal methods aim for the rigorous verification of software behavior
is an advantage when one is interested in designing and verifying a software
program. This same characteristic makes them difficult to apply when designing
requirements problems and their solutions:

• Requirements problems often involve vague, incomplete, ambiguous, con-
flicting, and/or otherwise problematic goals, assumptions, and practices
of people, and it is simply neither feasible, nor often relevant to convert
statements about these into formulae over predicates before these state-
ments have been clarified, and after it has been established what will be
the responsibilities of software and what of people using the software.

• Requirements need to be validated by stakeholders, which in turn normally
requires that stakeholders can understand a specification of the require-
ments problem and one or more of its candidate solutions. Doubts about

8



the feasibility of this were noted before (cf., e.g., Stidolph & Whitehead
[31] for a discussion and relevant references).

• When goals and assumptions are unclear, there can be many candidate
solutions to the same requirements problem. The exploration of alternatives
and their comparison over criteria such as cost and usability do not justify
every solution to be specified using a formal method (e.g., usability often
involves some form of graphical user interface elaboration, which often uses
ad-hoc visual syntaxes – cf., e.g., Bäumer et al. [5] for an early survey).

These are not arguments against formal methods themselves, but against
their use for tasks to which they simply do not apply very well. Increased reliance
on software, their long lifetimes, and increasing regulation thereon requires
systematic engineering, where formal methods have a clear role (cf., e.g., [19]).

To properly position the arguments above, it is important to clarify a confusion
of terminology between the formal methods and requirements engineering (re)
communities. This confusion may mislead to believe that formal methods
can cover all steps, from the unclear statements up to a detailed software
specification. In re, requirements can be anything from the organizational
(business) or individual goals, assumptions, and practices, however unclear they
are, up to and including fragments of a software specification written using a
formal method. In formal methods, however, the term requirement is interpreted
in a more restricted way. Namely, there is an implicit distinction between “high-
level objectives of an enterprise” and requirements, as suggested by Jones, Till
& Wrightson [17]. Van Lamsweerde, Darimont & Letier [32, p.910] explicitly
distinguish the goal and requirement concepts: “a requisite is a goal that can
be formulated in terms of states controllable by some individual agent [...] A
requirement is a requisite assigned to a software agent”. More recently, the
survey of practice and experience of formal methods application, from Woodcock
et al. [36], mentions projects in which goals, assumptions, and practices relevant
to the systems have already been distilled from high-level goals, in part due to
experience with similar-purpose past systems (survey mentions microprocessor
chip design, railway signaling and train control, smartcards for low-value cash-like
transactions, flight control computers, barriers in seaports, access control).

re did recognize these drawbacks at least since the 1980s, which was one of
the motivations to create new specification languages, usually called requirements
modeling languages (rmls). That there is more to writing requirements than
functional specification was recognized in the original rml [13] (hereafter orml),
“a notation for requirements modeling which combines object-orientation and
organization, with an assertional sublanguage used to specify constraints and
deductive rules” [12]. Formal semantics is given to orml via a mapping from
its descriptions to assertions in a predicate logic. One thereby obtains facilities
for the structuring and organization of predicate logic theories. The ontology in
orml distinguished between entities, activities, and assertions. This was judged
limited and responses to limitations went in two directions. rmls such as kaos
and i* took the direction in which the ontology remains fixed (i.e., one cannot
add or remove concepts when applying the rml) but include more concepts,
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designed to distinguish goals, assumptions, tasks, and so on. The other direction
was adopted in Telos [22] and consists of leaving the ontology undefined, while
having in the language the facilities needed to define an ontology. The second
approach is more expressive, but its abstraction makes it difficult to provide
methodological guidance which can be given when a fixed set of concepts is
known and manipulated every time the language is used.

An important and subtle limitation of rmls is that they keep these distinctions
outside of the mathematics of the specification language. To make this clearer,
consider how kaos [9] is designed:

“The overall approach taken in kaos has three components: (i) a
conceptual model for acquiring and structuring requirements models,
with an associated acquisition language, (ii) a set of strategies for
elaborating requirements models in this framework, and (iii) an
automated assistant to provide guidance in the acquisition process
according to such strategies.” [9]

Of interest here is the first point, where a conceptual model is combined with an
acquisition language. The acquisition language is a discrete-time and first-order
linear temporal logic, which departs from languages in formal methods mainly
by the absence of structuring mechanisms (e.g., traits and their relations in
Larch, schemas and their relations in z). The conceptual model provides the
structuring mechanism, by defining an ontology over a number of concepts
(object, operation, agent, goal, obstacle, requisite, requirement, assumption,
scenario) and relations (specialization, refinement, conflict, operationalization,
concern, and so on) [9, 32, 33]. Using the refinement relation, goals are organized
into and/or trees, and each goal can carry a theory (i.e., set of formulae) written
in the acquisition language.

The design principle in kaos is to define an ontology and have theories in a
logic correspond to instances of the concepts from the ontology. This principle
was followed subsequently in re when the aim was to make specification languages
that can go all the way from loose goals to formal method-like specifications
(e.g., Formal Tropos [11]). The principle has two important drawbacks, both of
which arise from keeping the conceptual model outside of the mathematics in
the specification language, or in other words, defining the mathematical logic
and the ontology independently from one another:

• When a formula or set of formulae is an instance of a concept2, such as
a goal, then a goal corresponds to a pattern of formulae. The patterns
are: p⇒ ♦q is called achieve goal (“if p, then eventually q”); p⇒ ♦¬q a
cease goal (“if p, then eventually not q”); p⇒ �q a maintain goal (“if p,
then always q”); and p⇒ �¬q a avoid goal (“if p, then never q”). Every

2There is more to a goal in kaos and Formal Tropos than only formulae. There is a natural
language statement that was rewritten in formulae, and there is other bookkeeping information.
Their presence does not, however, affect the argument that is given, since the argument is not
about the information in the goal, but what the goal is in a mathematical logic used to write
formulae.
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instance of an achieve or cease goal thus gives a liveness property to be
satisfied by the system, while an instance of maintain or avoid goal gives a
safety property. All of these goal types are independent from the logic in
patterns: one could replace the logic, and not much would change (as long
as it has negation, implication, and the temporal operators used in the
patterns). One could also replace the patterns, and nothing would change
in the ontology. This suggests that there is little influence of the ontology,
that is, of the conceptualization of the requirements problems and solutions,
on the logic that constrains the representation and reasoning about these
problems and solutions.3 In contrast, in every Techne formalism, the
ontology is a source of modalities over atomic facts in the mathematical
logic, so that a goal is a proposition with a modality, not a pattern of
formulae. The modalities are part of the logic.

• When an ontology for requirements is used as a structuring mechanism,
concepts useful for thinking about requirements are confused with those
relevant for structuring the requirements. In other words, a concept such
as goal should not play the role of a schema (as in z) or trait (as in Larch),
with refinement playing the role of inclusion relations in formal methods.
A goal serves to say what is desirable, not that it is part of something else.
The point is that an ontology for requirements should be orthogonal to an
ontology of concepts used for the structuring of requirements. Principles
for the structuring of specifications are independent from our preference of
goals and tasks, over states and transitions, hence that orthogonality.

In a summary, this first design principle for Techne has the effect that an
existing logic is not combined with an ontology for requirements. Rather, a logic
is made to fit the ontology for requirements.

2.2 Refine the Informal/Formal Distinction

A systems development project can be completed without the application of formal
methods, but not without statements of requirements in natural language. For
projects that do not have the maturity and criticality of those surveyed by
Woodcock et al. [36], surveys of practice in industry suggest that “formal”
representation of requirements problems and solutions is rare – e.g., Neill &
Laplante report 7% of their sample of practitioners used some such representation
[24]. Although it remains unclear what is meant exactly by “formal” and
“informal”, it is reasonable to assume that the limits of this continuum are
solutions written using a specification language from a formal method on the
formal side, and natural language documents on the informal side.

Instead of suggesting a single formalism with which to go from informal
statements of problems and solutions to expressions in formal methods, the

3This independence also begs the question of what drawbacks were accepted in exchange for
reusing an existing logic. When a discrete-time and first-order linear temporal logic is adopted,
two obvious ones are trivial deductions if requirements are inconsistent, and persistence of past
deductions when new requirements are added. This is discussed further below.
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aim with Techne is to have various formalisms which can be used to decompose
informal documents onto simpler natural language propositions, relate these
propositions, and ask questions about these relationships.

If one is interested in requirements for an ambulance dispatching system, a
statement in an informal document, such as If an ambulance is dispatched to
the incident location and the ambulance confirms that it has arrived at incident
location, then the incident is handled, will be converted in a Techne formalism
into g(p1)∧g(p2)→ g(q), where g is a and goal modality, read “it is a goal that”,
while p1 refers to An ambulance is dispatched to the incident location, p2 to
Ambulance confirmed arrival to incident location, and q to Incident is handled.

To go from a specification in Techne to a specification in a predicate logic, in
a formal method, consists of rewriting individual natural language propositions
as formulae of predicate logic, and mapping relations from the Techne formalism
onto patterns of formulae in the predicate formalism. This is not studied in this
paper.

2.3 Tolerate Inconsistency

Let ∆ be the set of formulae referring to information about a requirements
problem and its solutions, i.e., a requirements database, written in a logic named
x. It does not matter what specific logic x is, only some properties assumed for
it below.

When a specification language uses a variant of propositional or predicate
classical logic, its consequence relation x̀ is defined by a proof theory which
includes the ex falso quodlibet (efq) proof rule [27]. efq concludes anything
from an inconsistency. Let L be the set of all formulas of the logic x; efq is:

∀α ∈ L, ⊥
α . (efq)

When efq is allowed in the proof theory of x, deduction from an inconsistent
∆ returns useless conclusions. E.g., every requirement is a consequence of an
inconsistent ∆, which would lead to the erroneous conclusion that an inconsistent
∆ satisfies every requirement. The relation x̀ is called trivializable (triv) [15]
when it behaves so, or equivalently:

If ∆ ⊂ L and ∆ x̀ ⊥, then ∀φ ∈ L, ∆ x̀ φ. (triv)

In order to avoid clearly useless conclusions from an inconsistent ∆, a spec-
ification language must: (a) have a consequence relation x̀ that fails triv,
and thereby is paraconsistent, or (b) ask its user to resolve all inconsistencies
in ∆, thus obtain a set of formulas, denote it R(∆), which is consistent, i.e.,
R(∆) 6 x̀ ⊥, and then draw conclusions from R(∆).

Specification languages for requirements, those which do include a mathe-
matical logic, use a variant of classical logic, so that their x̀ succeeds at triv.
These rmls (cf., Robinson, Pawlowski & Volkov’s survey [26], and later work,
e.g., [11]) consequently follow the second approach (b) and offer strategies for
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the identification and resolution of inconsistencies in ∆ in order to obtain a
consistent R(∆) (e.g., [32, 33]).

In contrast to such classical languages, which succeed at triv, a paraconsis-
tent formalism (i.e., with a non-trivializable specification language) would allow
non-trivial conclusions to be drawn from an inconsistent ∆ before any change
thereto is made towards a consistent R(∆).

To see more clearly why this makes paraconsistent specification languages
more interesting than classical ones, consider the range of questions that one
can ask a specification language, the answers being logical consequences of a
set of well-formed formulas in the logic of the specification language. Let c̀ be
the consequence relation of a classical specification language and p̀ that of a
paraconsistent specification language. Since c̀ succeeds at triv, the following
is obvious:

If ∆ c̀ ⊥, then ∀R(∆) s.t. ∆ ⊆ R(∆), R(∆) c̀ ⊥. (2.2)

Equation 2.2 says that if ∆ is inconsistent, then it is impossible (if using a
formalism with c̀ ) to make a consistent R(∆) only by expansion, i.e., only by
adding formulas to ∆. This is a simple, but important observation, because from
it follows that two options remain to make a consistent R(∆) out of ∆: revision
or contraction. Revision consists both of adding new formulas to ∆ and removing
some formulas from ∆ in order to make a consistent R(∆). Contraction consists
of only removing formulas from ∆ in order to make R(∆). Since R(∆) must be
obtained by revision or contraction of ∆, this is obvious:

If ∆ c̀ ⊥ and R(∆) 6 c̀ ⊥, then ∆ 6= R(∆). (2.3)

According to Equation 2.3, a classical specification language must answer
questions, i.e., derive conclusions, not from the inconsistent database of require-
ments ∆, but from an R(∆), obtained by changing ∆. Among others, two kinds
of questions are of interest in re:

1. What are the logical consequences of X ⊆ Y ? where Y is a (part of) a
database of requirements, which for a classical specification language must
be consistent. In re, it is relevant to ask which requirements are satisfied
by some subset of requirements.

2. Can z be derived from X ⊆ Y ? where Y is (part of) a database of
requirements, and z is either a formula or z = ⊥. This is asked re in order
to know whether a requirement z = φ can be derived from (and this is
usually interpreted as “is satisfied by”) a set of requirements.

The range of questions to ask on a given requirements description ∆ can be
characterized through the set of all answers that can be obtained: the closure of
∆ is the set of all logical consequences of ∆ and thereby of all possible answers
that can be obtained from ∆ in a given logic. The closure of a set of formulas
Y in a logic with x̀ is Cl( x̀ , Y ) = {φ | Y x̀ φ}. Observe from triv above
that the c̀ -closure of an inconsistent ∆ is the set of all formulas in the logic of
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the classical specification language with c̀ , i.e., Cl( c̀ ,∆) = Lc, leading to the
following:

If ∆ c̀ ⊥, then Cl( p̀ ,∆) ⊂ Cl( c̀ ,∆) (2.4)

The set Cl( c̀ ,∆) \Cl( p̀ ,∆) includes all consequences of ∆ that cannot be
obtained using p̀ .

The following observation is important. It comes from Equation 2.3, while
assuming that ∆ is inconsistent and R(∆) is consistent and obtained by revising
or contracting ∆:

Cl( p̀ ,∆) 6= Cl( p̀ , R(∆)) (2.5)

That there is a difference between Cl( p̀ ,∆) and Cl( p̀ , R(∆)) suggests that
the same questions cannot be asked to ∆ and to R(∆), and thus that questions
asked on ∆ using p̀ cannot be asked on R(∆) using the same p̀ . I.e., some
questions and their answers are lost in the revision or contraction that changes
∆ into R(∆).

Outside re, a related argument in favor of paraconsistency has been for-
mulated as follows (e.g., [15]). A paraconsistent logic lets one avoid making
premature decisions to restore consistency to an inconsistent set ∆ of formulas.
Instead of deciding how to eliminate inconsistency every time it is encountered,
one draws conclusions while tolerating inconsistency in ∆, and thereby avoids
the loss of information observed above in Equation 2.5. In the context of re,
this amounts to say that one need not resolve an inconsistency as soon as it
is detected, but can let it be and, as is the case in Techne formalisms, make
use of it to decide which alternative set of requirements the system should be
engineered to satisfy.

Overall, a paraconsistent logic defined over a specification language would
allow useful conclusions to be drawn from an inconsistent description of require-
ments ∆, or, stated otherwise, be able to answer questions of methodological
interest in re.

3 What is a Formalism?

The aim in this section is to overview the general components found in Techne
formalisms, and relate the notion of formalism to those of syntax, semantics,
formal (specification) language, logic, database and interface.

3.1 Methodological Questions

The aim of a formalism is representation of information and automated reasoning
thereon. It is useful as long as it can be used to answer questions of interest with
respect to the problem one wishes to solve. When working with requirements
problems and solutions, the broad questions of interest are as follows:
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Q1: What kinds of information are relevant? The formalism should identify
the kinds of information to elicit from the stakeholders of the system-to-be,
and the kinds of information that may not necessarily be amenable to
elicitation, but is still relevant when dealing with problems and solutions
in re.

Q2: What are the aims that the information serves? The overall aim is to
understand a particular requirements problem and find solutions to it.
The formalism should define precisely the requirements problem and the
candidate solution concepts.

Q3: How to explicitly represent information? Instances of the various relevant
kinds of information need to be represented and recorded in some format
amenable to communication and analysis.

Q4: What conclusions to draw from explicit information? Explicitly represented
information may allow various informal, potentially ambiguous, conclusions.
The formalism should suggest which conclusions are correct.

Q5: How to transform information to achieve those aims? Elicited information
needs to be clarified, made more detailed, and otherwise modified to
formulate the specific requirements problem and its candidate solutions.
The formalism should say how to transform information towards these
aims.

Q6: How to verify if the aims have been achieved? Determining if a specification
is effectively a solution to a specific requirements problem requires drawing
conclusions about the relationships between the former and the latter.

Q7: How to change the representation of information? Requirements may
change as a result of learning more about the requirements problem and
alternative ways of solving the problem. E.g., this can be the case when it
is necessary to reestablish the consistency of some subset of requirements.
The formalism should suggest what changes are allowed on a representation
of information and what the consequences of these changes are.

Q8: How to compare and rank alternatives? There are likely to be various al-
ternative solutions to the requirements problem. The formalism should say
which information gives criteria for the comparison of candidate solutions,
and how these criteria are used to rank candidates.

The formalism that one chooses should, by design, suggest how to answer
some or all of these questions. The questions are intertwined: e.g., deciding
which conclusions are correct and determining if a specification is a solution to
a requirements problem both concern the rules of inference in the formalism.
This suggests that there are limitations, as discussed earlier (§2) to combining
components from general-purpose formalisms and applying them to re. The
rest of this section discusses various components and their relationships to the
questions above.
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3.2 Explicit Information and Its Classification

Syntax is a set of symbols combined with a grammar. Combinations of symbols
allowed by the grammar are usually and interchangeably called expressions,
sentences, or (well-formed) formulas. Symbols refer to objects in a semantic
domain. The semantic mapping function says which symbol or combination of
symbols refers to, respectively which object or combination of objects in the
semantic domain.

The combination of syntax, semantic domain, and semantic mapping function
is a formal language, and if used for the specification, a formal specification
language. This is usual terminology, shared by, e.g., Wing [35].

A convenient way to describe a semantic domain is to define an ontology
of the information judged relevant to the problem that is being studied. The
semantic domain is then a set of instances of the concepts in the ontology, or
equivalently, the union of all extensions of all concepts in the ontology. A relation
between two concepts in the ontology refers to a relation between the objects in
the extensions of the respective concepts.

The concepts and relations in the ontology are normally reflected in the syntax
of the formal language. Concepts may define sets of symbols, each corresponding
to a member of the extension of the concept, while relations may be referred to
by connective symbols. If a formal language where natural language propositions
are members of the semantic domain, and where conjunction is a relation between
some propositions, the syntax is likely to include symbols, say, p, q, r, indexed as
needed, to refer to propositions and a connective symbol, e.g., ∧ to refer to the
conjunction relation, if the formal language is part of a formal logic. Grammar
will restrict how propositions and connective symbols can be combined.

The combination of a semantic domain and a semantic mapping function, as
they are described above, can be called domain semantics, to distinguish it from
other and compatible semantic domains and semantic mapping functions (e.g.,
correspondence semantics discussed below). A formal specification language
needs at least syntax and domain semantics.

Example 3.1. (A simple formal language.) Suppose that the ontology has only
one primitive concept, called requirement, and that its instance is any natural
language proposition elicited from the stakeholders of a system-to-be. There
are two relations in the ontology, in which instances of X can stand, namely
conjunction and conditional (“if..., then...”) relation. Let the set of symbols for
propositions be a finite set {p1, . . .}, and p be some generic member of that set.
Let the grammar be defined in Backus-Naur Form (bnf) as follows:

φ ::= p | p1 ∧ . . . ∧ pn≥1 → pn+1 (3.6)

where φ is an expression, and the symbols ∧ and → refer to, respectively, the
conjunction and conditional relations. Informally, a specification in this language
can be read as an and/or tree of requirements, each written as a natural
language proposition, where an and node is any proposition p that is on the
right-hand side of →, while p is an or node if there are two or more expressions
where it is on the right-hand side of two or more expressions with →. �
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Let L denote the set of all expressions that can be written using symbols and
grammar in some formal language called x. Let P be the set of all propositions
(not proposition symbols, but that which the symbols refer to), and P : L −→ P .
The resulting formal language is tuple:

(L, P,P). (fl)

Expressions written in a formal specification language can be called explicit
information. The choice of domain semantics of the formal language answers
Q1. The symbols and grammar together with domain semantics answer Q3.
By defining relations between pieces of information, an fl also responds to
Q5: in Example 3.1, and/or tree-like structures can be used to transform
explicit information in order to add detail to it – the refinement relation between
requirements is indeed often captured by and/or trees in re.

3.3 Implicit Information and Its Derivation

Implicit information are the conclusions that can be drawn from the expressions
in the formal language. Implicit information cannot be controlled through a
formal specification language alone. Such control requires the definition of the
rules to use to draw conclusions.

A logic is typically made of a formal language and semantics other than
(and/or in addition to) domain semantics. Since Techne is a family of proposi-
tional formalisms, semantics typical for predicate languages are not discussed.

Proof-theoretic semantics amount to a definition of the roles that expressions
can have in deductions. It requires the definition of a proof theory, that is, rules
of inference and/or axioms which together define the consequence relation x̀ of
x. Such a logic is the tuple:

(L, P,P, x̀ ). (log)

Example 3.2. (A simple logic.) Continuing Example 3.1, suppose that the
following inference rule is defined:

If p1, . . . , pn and (
∧n
i=1 pi)→ pn+1, then conclude pn+1.

With no axioms, a consequence relation x̀ can be defined from this proof rule
(i.e., modus ponens). One possible definition is:

Let Y ⊆ L, and φ ∈ L. Y x̀ φ if and only if (i) φ ∈ Y or (ii) φ is
such that (

∧n
i=1 pi)→ φ is in Y and for 1 ≤ i ≤ n, Y x̀ pi.

This consequence relation says that φ can be deduced from a set Y iff that
set already includes φ, or if there is an implication that has p as its consequent,
and the antecedents in the implication can all be deduced from Y . �

Proof semantics are concerned with the correctness of deductions with regards
to rules of inference and/or axioms. To state whether propositions and expressions
over propositions correspond to observed conditions “in the world” requires
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correspondence semantics. For simplicity, the semantic domain includes two
“truth values”, true and false. The semantic mapping function can be defined
inductively for a given language as in the following example.

Example 3.3. Correspondence semantics for the language defined in Example
3.1 is a set {true, false}, and the semantic mapping function defined inductively
as follows:

• Proposition p is true if and only if (iff) P(p) accurately describes the world;

• Expression p1 ∧ . . . ∧ pn≥1 → pn+1 is true iff if every pi, 1 ≤ i ≤ n is true,
then pn+1 is true.

�

The semantic mapping function in correspondence semantics can also be
called a model, denoted M, and is such that M : L −→ {true, false}. The
satisfaction relation |= can then be defined as follows:

M |= φ iff M(φ) = true. (3.7)

The satisfaction relation can be inductively defined by analogy to how truth
values are assigned to propositions and expressions.

Example 3.4. Given correspondence semantics for L, i.e., the pair ({true, false},M),
the satisfaction relation |= for x is defined inductively as follows:

• M |= p iff M(p) = true;

• M |= p1 ∧ . . . ∧ pn≥1 → pn+1 iff if M(pi) = true for every proposition pi,
1 ≤ i ≤ n, then M(pn+1) = true.

�

The logic with correspondence semantics is the tuple:

(L, P,P, x̀ , |=). (log+cs)

An log or log+cs responds to Q1, Q3, Q4, Q5, and Q6. By stating which
conclusions are correct, it addresses Q4, and thereby also Q6.

Techne formalisms do not have correspondence semantics, only proof seman-
tics. This still allows to talk about satisfaction in Techne, since x̀ φ can be read
“φ is satisfied”, without checking that also |= φ.

3.4 Comparison & Ranking

Alternative refinements of requirements and alternative ways of satisfying them
result in more than one candidate solution to a requirements problem. All
alternative solutions will share the same properties, such as that each is internally
consistent, but once there are more than one of them, it is necessary to have
ways of representing and using information for their comparison and ranking.
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A logic can be used to define the threshold properties that a set of expressions
should have in order to count as a solution to a requirements problem. E.g., if
one such property is consistency, then a set S will not be a candidate solution if
S x̀ ⊥. If consistency is the only necessary property, then S will be a candidate
solution if S 6 x̀ ⊥.

Specific threshold properties of solutions will be discussed later and for each
Techne formalism. These properties form a threshold, in the sense that a set of
information must satisfy all these properties to count as a solution. It follows
that these properties are not criteria for the comparison of candidate solutions.

There are, broadly speaking, three kinds of criteria for the comparison of
solutions:

• Criteria from binary preferences over requirements: e.g., a preference rela-
tion usually says that satisfying one requirement is strictly more desirable
to satisfying another one. Each preference gives one criterion: a solution
which satisfies the preferred requirement ranks higher, over that criterion
alone, than any solution which satisfies the less preferred requirement.

• Criteria from individual preferred requirements: not all requirements must
be satisfied by a candidate solution, some can be violated. For a requirement
which can be violated, it is more desirable to satisfy it than to violate
it. This corresponds to a special kind of preference relation, between a
requirement and its negation, in contrast to preferences mentioned above.
Every preferred requirement gives a corresponding criterion: over that
criterion alone, a solution which satisfies the preferred requirement ranks
higher than a solution which satisfies the negation of that requirement.

• Criteria from nonfunctional requirements: different solutions will result in
different levels of reliability, performance, security, safety, usability, and so
on. Such nonfunctional requirements give criteria alike binary preferences:
if a system-to-be should be reliable, and there is measure of reliability,
then this nonfunctional requirement gives a ranking of candidate solutions.
Namely, candidates with higher values of the reliability measure are more
desirable – over the reliability criterion only – than candidates with lower
values of that same measure.

A set of criteria alone is an input to decision-making towards the selection of a
solution. As the number of criteria and candidates increases, it becomes relevant
to introduce decision rules. Each criterion provides a scale on which every
candidate solution obtains a value. A decision rule is a function that returns,
for a given solution, the rank of that solution over an aggregate of one, some,
or all criteria. A decision rule may also suggest to choose the highest-ranking
solution returned by that decision rule.

The combination of criteria with a logic may be done in two ways. One way
is to allow preferences into the syntax, and have them act just like any other
connective. The other way is to restrict more how preferences can be written
using the logic. In both cases, (i) preference relations are relations between
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members of the semantic domain in the domain semantics of the logic, and (ii)
it should be decided how, if at all, preference relations have a role in the proof
semantics and/or correspondence semantics of the logic.

Let (L, P,P, x̀ ) be a logic as discussed earlier in this section. To have
criteria for comparison, add to the logic the preference relation and indifference
relations, denoted, respectively � and ≈. Both are binary relations between
expressions in L, i.e., �⊆ L×L and ≈⊆ L×L. ψ � φ is informally interpreted
read “satisfying ψ is at least as desirable as satisfying φ”. ψ ≈ φ reads “satisfying
ψ is as desirable as satisfying φ”.

Every candidate solution is represented using the language of the logic, so
that a candidate equates to a set of expressions. A decision rule, denoted D, is
then a function from a set of candidates to a partial order of these candidates,
and the decision rules is a set of such functions (℘ returns the powerset of its
parameter):

D
def
= {D | D : ℘(℘(L)) −→ {≥|≥⊆ ℘(L)× ℘(L)}} (dr)

Any particular decision rule is likely to be specified as a macro. Taking a set
of candidate solutions as its input, the macro will apply rules for the aggregation
of ranks of candidates over individual criteria. Its output is a partial order on
the members of its input set. Loosely speaking, the partial order will say which
candidates are better than others according to the rules in the macro.

Example 3.5. Continuing with previous examples, allow a strict preference
relation � between any pair of expressions. A decision rule may be the following
macro, call it M :

1. Initiate the score of every candidate solution by setting it at 0.

2. For every candidate solution S, if a proposition that is strictly preferred
in a preference relation is (i) in the candidate solution S, or (ii) can be
deduced from S, then add 1 to the score of S.

3. Repeat Step 2 above until all preference relation pairs have been processed.

4. Define the binary relation ≥M , such that if the score of Si is equal or
greater than the score of Sj , then Si ≥M Sj .

This macro outputs the relation ≥M over the candidate solutions given to it.
It has the obvious drawback that each preferred proposition adds the same value
(plus one) to the score of a candidate solution: i.e., all preferences are equally
important. �

Adding preference and indifference relations, and decision rules to log results
in the tuple:

(L, P,P, x̀ ,�,≈,D) (log+pref+dr)

Adding preference relations and decision rules to a logic gives a structure
gives an answer to question Q8. Preferences allow the representation of criteria,
while decision rules rank alternative solutions using these criteria.
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3.5 Database & Interface

Given a formal language for requirements problems and solutions, a requirements
database – denote it ∆ – is simply a set of expressions in that language. Using
the database for storage and retrieval requires an interface – denote it I – which
includes operations on the database.

To interact with a knowledge base, Levesque & Lakemeyer’s [21] use three
primitive operations: (i) ASK, to retrieve from a knowledge base; (ii) TELL,
to add to the knowledge base; and (iii) INITIAL, to retrieve the content of
the knowledge base before any TELL operation was performed. In Telos [22],
Mylopoulos, Borgida, Jarke & Koubarakis use the operations TELL, UNTELL, and
RETELL to add or revise a knowledge base, while RETRIEVE and ASK serve to
retrieve from it.

Two sets of primitive operations should be found in an interface:

• Operations on explicit information require a formal language. It should
be possible to add, remove, and retrieve explicit information from the
database.

• Operations on implicit information require a logic. These operations apply
not on ∆, but its closure over the consequence relation in the logic: if x̀ ,

then the operations apply on ∆̄
def
= {φ | ∆ x̀ φ}. Operations on ∆̄ should

cover the common operations in belief revision, which are likely to include
some forms of expansion (adding to ∆̄ an expression which is consistent
with ∆̄), contraction (removing from ∆̄), and revision (adding information
which makes ∆̄ inconsistent and then changing the expanded ∆̄′ to make
it consistent).

Operations on explicit information can be obtained through, e.g., sql if ∆ is
implemented as a relational database.

Operations on ∆̄ are more interesting. Let ∆̄′ be the result of applying some
such operation on ∆̄. The definition of operations on ∆̄ will depend on the
properties of the consequence relation and on the properties of ∆̄ that one wishes
to always maintain.

For example, Alchourrón, Gärdenfors & Makinson (agm) [2] gave definitions
of operators when x̀ is classical (and thus, not paraconsistent) and if ∆̄ must
be consistent. In that case: (i) adding an expression φ which is consistent with

∆̄ results in the consistent ∆̄′
def
= {ψ | ∆ ∪ {φ} x̀ ψ}; (ii) removing φ from

∆̄ requires one to decide which formulas to take out to ensure that ∆̄′ 6 x̀ φ;
(iii) similarly to contraction, revision requires deciding how to change ∆̄ when
∆̄∪{φ} x̀ ⊥, to obtain a consistent ∆̄′. Since it was argued that agm operators
are general, it would be expected that they apply to databases of requirements
problems and solutions. It will be shown later that this is not the case (cf., §5).

A formalism is a structure obtained by adding the database and its functional
interface for explicit and implicit information, and is the tuple:

(L, P,P, x̀ ,�,≈,D,∆, I) (formalism)
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The tuple covers all methodological questions Q1–Q8.

4 Running Example

The examples used throughout the paper draws on the London Ambulance
Service case study [3]. The requirements used in examples are for an ambulance
dispatching system (ads hereafter). Examples are presented in increasing detail,
as each Techne formalism allows.

5 T1

T1 is the simplest Techne formalism. It can be used to specify goals, domain
assumptions, and tasks, and the inference and conflict relations between them.
The formalization of the inference relation is such that the fragment of the
requirements database in T1 that excludes conflict relations can be visualized
as an and/or forest. The forest can be interpreted as showing refinement and
decomposition of requirements, so that T1 can be used to write the common
“goal trees”.

5.1 Illustration

A goal for an ads is that ambulances arrive at incident locations. This is
written in T1 as a propositional symbol, e.g., q1 which refers to the proposition
“Ambulances arrive at their incident locations”. The symbol is labeled g since
the conditions stated in the proposition are desired. In short, g(q1).

A basic feature needed in any specification language for requirements is a
mechanism that handles the adding of details to requirements which have already
been identified. Usually called refinement or decomposition, the mechanism is
realized in T1 using the inference relation.

The goal g(q1) can be satisfied if all following goals are satisfied together:

g(p1: Identify available ambulances);

g(p2: Choose ambulance);

g(p3: Assign ambulances);

g(p4: Mobilize ambulances);

g(p5: Confirm mobilization).

The relationship between g(p1), . . . , g(p5) and g(q1) is such that if g(p1) ∧
. . . ∧ g(p5) can be deduced, and g(p1) ∧ . . . ∧ g(p5)→ g(q1) can, then g(q1) can
be deduced as well. Informally, if the goals g(p1), . . . , g(p5) are satisfied, and if
it is the case that when they are satisfied, then g(q1) is also satisfied, then g(q1)
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can be considered as satisfied. There is, then, an inference relation from the five
goals to g(q1) because

{g(p1) ∧ . . . ∧ g(p5), k(g(p1) ∧ . . . ∧ g(p5)→ g(q1))} |v1 g(q1) (5.8)

and the consequence relation |v1 in T1 allows the application of modus ponens.
The conditional g(p1)∧ . . .∧g(p5)→ g(q1) is a domain assumption, i.e., k(g(p1)∧
. . .∧ g(p5)→ g(q1)), because decomposing or refining g(q1) onto g(p1), . . . , g(p5)
requires assuming the conditional that if the former are satisfied, then the latter
is satisfied.

The inference relation is used to define derived relations, such as refinement,
decomposition, and operationalization. All three are common in languages for
re, and each of them can be defined by adding constraints on the kinds of
requirements to allow in an inference relation. E.g., there is a (goal) refinement
relation only if there is an inference relation where all premises (except the
domain assumption over the implication) are goals, and the conclusion is a
goal. When all premises are tasks and the conclusion is a goal, then it is not a
refinement, but an operationalization relation. Finally, when all premises are
tasks, and the conclusion is a task, then it is a task decomposition relation. The
derived relations are revisited later (cf., §5.2).

Conflict is an n-ary relation between members of a minimally inconsistent set
of propositions. The identification of available ambulances, i.e., the satisfaction
of g(p1), can be done at least in two ways. One consists of having every control
assistant in the dispatch center manually keep track of available ambulances.
Denote this as the task t(u3). Another way is to execute two tasks: (i) t(u1)
which consists of making the list of available ambulances through the dispatch
interface, and (ii) t(u2) which is to update the list of ambulances when an
ambulance is assigned to an incident. The two options are two alternative
operationalizations of g(p1). Moreover, it is assumed that t(u1) and t(u3) cannot
be satisfied together, i.e., k(t(u1) ∧ t(u2)→ ⊥), so that ⊥ is derived whenever
t(u1) and t(u2) is on the left-hand side of |v1 .

Figure 1 gives the refinement of g(q1) onto g(p1), . . . , g(p5) and the subsequent
operationalization of each of these goals onto tasks and domain assumptions.

5.2 Formalization

Semantic Domain. The semantic domain is a set of propositions in natural
language, partitioned into the extensions of, respectively the Goal, Domain
assumption and Task concepts. Each concept gives one modality over expressions
in T1, as follows. The symbol for a modality is on the left-hand side below. A
proposition is:

k: a domain assumption, if it states a condition that is believed to hold;

g: a goal, if it identifies a desirable condition that does not hold;

t: a task, if it says how to bring about a condition.
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g(q1: Ambulances arrive at their incident locations)

g(p1: Identify available ambulances)

g(p2: Choose ambulance)

g(p3: Assign ambulances)

g(p4: Mobilize ambulances)

g(p5: Confirm mobilization)

t(u1: Make the list of all available and of all allocated ambulances 
available through the dispatch interface)
t(u2: Update the list of all available and of all allocated ambulances 
every time an ambulance is assigned to an incident)

t(u3: Every control assistant manually keeps track of available ambulances)

t(u4: Dispatch software ranks available ambulances from the most 
appropriate for the incident location to the least appropriate)
t(u5: Dispatch software displays the ranking of available ambulances 
to the control assistant)
t(u6: Control assistant chooses herself/himself an ambulance among 
available ambulances)

k(r1: Control assistants use heuristics that are difficult to automate when 
choosing an ambulance)
t(u7: Dispatch software makes no recommendations to the control 
assistant on which ambulance to choose)

t(u8: Control assistant uses the dispatch software to select one of the 
available ambulances and assign it to the incident)

t(u9: Control assistant verbally communicates to all other control 
assistants which ambulance was chosen for assignment to the incident)

t(u10: Control assistant mobilizes the ambulance through radio 
communication with the staff in the ambulance)

t(u11: Control assistant uses the dispatch software to mobilize the 
ambulance without talking to the staff in the ambulance)

t(u12: Staff in the ambulance uses the dispatch software client in the 
ambulance to confirm mobilization at the given incident location)

Legend Conditional 
(if-then) Conflict

g: Goal

k: Domain assumption
t: Task

Figure 1: Simple early requirements for las specified using T1.

There are three primitive relations between propositions: conjunction, defined
as usual, implication read as a conditional relation, and consequence, which is
nonstandard and defined below.

Syntax. p, q, r, indexed or primed as needed, refer to primitive natural language
propositions, i.e., those that need not be further decomposed, because they do
not state a relation of T1 over other propositions. Lowercase and uppercase
Greek letters refer to, respectively, expressions and sets of expressions. The
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language is the finite set L1 of all expressions φ ∈ L1 which satisfy the following
bnf specification:

a ::= g(p) | k(p) | t(p) (5.9)

b ::= (

n≥1∧
i=1

ai)→ a | (
n≥2∧
i=1

ai)→ ⊥ (5.10)

φ ::= a | k(b) (5.11)

The combinations of the conjunction and implication relations (b above)
are always domain assumptions. This reflects the idea that relations between
primitive propositions amount to one’s assumptions (and not, e.g., desires) about
relationships between the conditions stated by the propositions. T1 does not
allow nesting, so that e.g., g(t(p)) is not an expression.

Semantic Mapping. Propositions and expressions are categorized according
to the informal definitions of the concepts of the semantic domain. The semantic
mapping function is thereby defined through the informal definitions of the
concepts. The domain of the function is L1, its codomain the semantic domain.

Consequence Relation. Only the modus ponens proof rule can be applied
in deduction. All expressions in a requirements database ∆ which include the
implication connective are considered as axioms in the set ∆→.

It is assumed throughout the paper the set of axioms ∆→ is consistent for any
∆. Note that when Π ⊆ L1, then all axioms apply when deducing from Π and
from any other subset of, or set equal to L1. To make this explicit, the special
subset relation is defined as follows, for any two sets Π and Φ of expressions:

Π ⊆τ Φ
def
= Π ⊆ Φ and Φ→ ⊆ Π (⊆τ )

Π ⊂τ Φ
def
= Π ⊂ Φ and Φ→ ⊆ Π (⊂τ )

Definition 5.1. For Π ⊆τ L1 and φ ∈ L1, the consequence relation |v1 is such
that:

• Π |v1 φ if φ ∈ Π, or

• Π |v1 x if ∀1 ≤ n, Π |v1 φi and k((
∧n
i=1 φi)→ x) ∈ Π.

�

The consequence relation |v1 is sound with regards to standard entailment `
in classical propositional logic, but is incomplete in two ways: it only considers
deducing positive atomic facts, and no ordinary proofs based on arguing by
contradiction go through, thus being paraconsistent.
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5.3 Problem & Solution Concepts

The widely accepted general requirements problem definition is Zave & Jackson’s
[38] (zj hereafter), stating that re should produce a specification (S) of a design
of the system-to-be, which ensures that the system-to-be is consistent with
domain assumptions (K) and together with them entails requirements (R): i.e.,
that K,S ` R. This definition emphasizes two properties:

1. Consistency, in that the operationalization of requirements, i.e., K ∪ S
must be consistent;

2. Achievement of requirements, as K ∪ S are only acceptable if they are
sufficient to deduce R.

If goals are zj’s requirements and tasks are their specification, then the
requirements problem in T1 which corresponds to zj requirements problem is as
follows, whereby the conditions are transferred in the solution concept.

Definition 5.2. Given a set of goals and domain assumptions, find a solution. �

Both conditions can be evaluated in T1. The achievement condition in T1
equates to asking that all goals are satisfied by tasks and domain assumptions.
This in turn requires the introduction of the selection (Select) and operational-
ization (Op) functions.

The selection function simply returns all expressions sharing a given modality
in a set of expressions.

Definition 5.3. The select function

Select : {g, t, k} × ℘(L1) −→ ℘(L1) (5.12)

is defined as follows, for x ∈ {g, t, k} and Π ⊆ L1:

Select(x,Π)
def
= {φ | φ has the modality x or φ ∈ Π→}. (5.13)

The part “or φ ∈ Π→” ensures that the output of the select function always
includes all axioms. �

To simplify notation, the following abbreviation is used:

Select(x,Π) ≡ Πx. (5.14)

E.g., Πg is the set of all goals and axioms in Π.
Given a φ, Op(φ) should return all sets of tasks and domain assumptions, such

that each of these sets is enough to derive φ. If a database ∆ ⊆ L1 is visualized
as an and/or graph, then Op(φ) returns all sets of leaf nodes connected to φ.

Definition 5.4. The operationalization function

Op : ∆ −→ ℘(℘(∆k ∪∆t)) (5.15)
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is defined as follows:

Op(φ ∈ ∆)
def
= {Π ⊆τ ∆k ∪∆t | Π 6|v1 ⊥, and Π |v1 φ,

and 6 ∃Φ ⊂ Π, Φ |v1 φ}. (5.16)

Every member of Op(φ) is a minimal consistent set of tasks and domain assump-
tions that is sufficient to operationalize φ. �

Informally, Op(φ) indicates all ways in which φ is operationalized. E.g.,
Op(g(p1)) is the set which includes two sets: (i) {t(u1), t(u2)} and (ii) {t(u3)}.
Definition 5.5. A solution to the requirements problem given by a requirements
database ∆ in T1 is a set S ⊆τ ∆k ∪ ∆t of domain assumptions and tasks,
which satisfies the following two properties:

1. Consistency : S 6|v1 ⊥;

2. Achievement : ∀φ ∈ ∆g s.t. 6 ∃ψ, φ ∈
⋃

Op(ψ) and ∃Π ∈ Op(φ) s.t. Π ⊆ S.

�

The Achievement condition is defined in such a way, that the goals to satisfy
are all goals which are themselves not refined or operationalized, i.e., which are
not children of other requirements in ∆.

For an example of zj problem and solution, consider again Figure 1. Assume
that all goals there are the set R′, all domain assumptions K ′, and all tasks
S′. Given R′ and K ′ initially, the zj problem says that one should find tasks
S ⊆ S′ which satisfy a consistent subset K ⊆ K ′ of domain assumptions, and a
consistent subset of requirements R ⊆ R′. The highlighted tasks and domain
assumptions in Figure 2 (some of which are shown as arrows going from the
tasks to the goals) are one solution to the requirements problem in Figure 1.
This can be verified by looking at conflict and conditional relations in Figure 2.

5.4 Derived Relations

The aim now is to start by defining the inference and conflict relations, and
consider how they are specialized into oft-used relations in specification languages
for re.

The inference and conflict relations are not primitive in T1, as both are
defined using conjunction, implication, and consequence relations.

5.4.1 Inference Relation and Its Specialization

Definition 5.6. A requirement φ ∈ ∆ stands in the inference relation with the
requirements {ψ1, . . . , ψn} ⊆ ∆, n ≥ 1, if and only if:

1. k((
∧n
i=1 ψi)→ φ) ∈ ∆→;

2. 6 ∃Π ⊆τ ∆ s.t. Π ⊂τ ({ψ1, . . . , ψn} ∪∆→) and Π |v1 φ;

3. 6 ∃γ ∈ ∆→ s.t. {γ} ∪ {
∧n
i=1 ψi} |v1 ⊥.
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g(q1: Ambulances arrive at their incident locations)

g(p1: Identify available ambulances)

g(p2: Choose ambulance)

g(p3: Assign ambulances)

g(p4: Mobilize ambulances)

g(p5: Confirm mobilization)

t(u1: Make the list of all available and of all allocated ambulances 
available through the dispatch interface)
t(u2: Update the list of all available and of all allocated ambulances 
every time an ambulance is assigned to an incident)

t(u3: Every control assistant manually keeps track of available ambulances)

t(u4: Dispatch software ranks available ambulances from the most 
appropriate for the incident location to the least appropriate)
t(u5: Dispatch software displays the ranking of available ambulances 
to the control assistant)
t(u6: Control assistant chooses herself/himself an ambulance among 
available ambulances)

k(r1: Control assistants use heuristics that are difficult to automate when 
choosing an ambulance)
t(u7: Dispatch software makes no recommendations to the control 
assistant on which ambulance to choose)

t(u8: Control assistant uses the dispatch software to select one of the 
available ambulances and assign it to the incident)

t(u9: Control assistant verbally communicates to all other control 
assistants which ambulance was chosen for assignment to the incident)

t(u10: Control assistant mobilizes the ambulance through radio 
communication with the staff in the ambulance)

t(u11: Control assistant uses the dispatch software to mobilize the 
ambulance without talking to the staff in the ambulance)

t(u12: Staff in the ambulance uses the dispatch software client in the 
ambulance to confirm mobilization at the given incident location)

Legend Conditional 
(if-then) Conflict

g: Goal

k: Domain assumption
t: Task

Figure 2: One solution to the requirements problem in Figure 1.

The first condition requires that there be an axiom such that {ψ1, . . . , ψn} ∪
{k((

∧n
i=1 ψi)→ φ)} |v1 φ. The second, minimality condition requires that there

be no subset of the premises from which the consequence can be deduced. The
third condition requires that the premises be consistent. �

The inference relation is used to define the concept of argument in T1. An
argument puts together the premises and the conclusion in an inference relation.

Definition 5.7. The pair (Π, φ) is an argument in ∆ if and only if:
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1. Π ⊆τ ∆,

2. φ is in the inference relation to Π \∆→.

Two conventions are used: (i) Π is called the set of premises in the argument
(Π, φ) and φ the conclusion of that argument; (ii) the set of all arguments of ∆
is:

Arg(∆)
def
= {(Π, φ) | Π ⊆τ ∆}. (5.17)

�

Arguments are used to simplify the definition of the specializations of the
inference relation.

The specialization of the inference relation is done by restricting the modalities
on the premises and of the conclusion in an inference relation. These constraints
and resulting relations are summarized in Table 2. The table shows that four
common relations in re languages can be defined by specializing the inference
relation.

Table 2: Inference relation and its specializations, obtained by restricting the
modalities on premises and conclusions in an inference relation.

Relation Allowed premises Allowed conclusion

Inference Any + Axioms Any
Goal refinement Goals + Axioms Goal
Task decomposition Goals and/or Tasks + Axioms Task
Goal operationalization Tasks + Axioms Goal
Means-ends Tasks + Axioms Goal

Goal Refinement. Darimont & van Lamsweerde [10] defined goal refinement
as the relationship between a goal being refined and subgoals which refine it, the
latter having to satisfy three conditions: (i) be sufficient to deduce the refined
goal, (ii) be minimal, and (iii) be consistent. This goal refinement relation can
be defined as follows in T1.

Definition 5.8. A goal φ ∈ ∆g stands in the goal refinement relation with the
goals {ψ1, . . . , ψn} ⊆ ∆g \ {φ}, and the former is said to be refined by the latter,
if and only if:

1. ∃k((
∧n
i=1 ψi)→ φ) ∈ ∆→;

2. 6 ∃Π ⊆τ ∆g s.t. Π ⊂τ ({ψ1, . . . , ψn} ∪∆→) and Π |v1 φ;

3. 6 ∃γ ∈ ∆→ s.t. {γ} ∪ {
∧n
i=1 ψi} |v1 ⊥.

The first condition ensures that φ can be deduced from the goals and that domain
assumption. The second condition is ensures that the set of subgoals is minimal,
i.e., that there is no smaller set of goals from which φ can be deduced. The third
condition requires that there is no domain assumption according to which the
subgoals are consistent. �

29



Observe that an argument where all premises and the conclusion are goals is
an argument where the premises and the conclusion are in the goal refinement
relation.

Task Decomposition. Yu & Mylopoulos [37] introduced task decomposition
in i-star. It is similar to goal refinement, with two differences: (i) the requirement
being refined/decomposed must be a task, and (ii) it can be refined by any
combination of goals and tasks.4 Task decomposition is defined as follows in T1.

Definition 5.9. A task φ ∈ ∆t stands in the task decomposition relation with
the goals and/or tasks {ψ1, . . . , ψn} ⊆ ∆g ∪∆t \ {φ}, and the former is said to
be decomposed onto the latter, if and only if there is an argument (Π, φ) of ∆,
where Π = {ψ1, . . . , ψn} ∪∆→. �

The task decomposition relation was not formalized in i-star. The definition
above assumes that it is reasonable to want to avoid having useless requirements
in a decomposition (hence the second – minimality – condition in Definition 5.9)
and that the requirements in the decomposition should be consistent (hence the
third condition).

Goal Operationalization or Means-Ends. The goal operationalization
relation in kaos [9] is similar to the means-ends relation in i-star. The idea of
both is that tasks should be executed in order to satisfy goals. Operationalization
in kaos stands between goals and constraints, whereby a constraint is operational,
in the sense that it is formulated in terms of objects and actions available to
the agents in/of the system. Means-ends rather emphasizes the role of goals as
reasons why tasks are executed, i.e., a task exists in a requirements database
because it is a means to a goal. The generic operationalization relation, which
captures the idea of both goal operationalization and means-ends is defined in
T1 as follows.

Definition 5.10. A goal φ ∈ ∆g stands in the goal operationalization relation
with the tasks {ψ1, . . . , ψn} ⊆ ∆t \ {φ}, and the former is said to be opera-
tionalized by the latter, if and only if there is an argument (Π, φ) of ∆, where
Π = {ψ1, . . . , ψn} ∪∆→. �

5.4.2 Conflict Relation and Its Specialization

Definition 5.11. Requirements {φ1, . . . , φn} ⊆ ∆ stand in the conflict, for n ≥ 2,
if and only if:

1. ∃k((
∧n
i=1 φi)→ ⊥) ∈ ∆→;

2. 6 ∃Π ⊆ ∆ s.t. Π ⊂ ({φ1, . . . , φn} ∪∆→) and Π |v1 φ.

The two conditions state that a conflict relation exists only between members of
a minimally inconsistent set of requirements. �

4There is no concept in i-star [37] which corresponds to Domain assumption, so it is not
allowed here to have domain assumptions in a decomposition of a task.
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The conflict relation is specialized onto Type-A, Type-B, and Type-C conflict
relations, the first being conflict relations to tolerate, the second and third being
ones to resolve.

Type-A Conflict. Type-A conflicts are used to distinguish between alternative
solutions to a requirements problem. Eliminating these conflicts early on may
be premature, as this may strongly reduce the number of alternatives being
considered. Tolerating these conflicts means leaving them in the requirements
database.

Consider Figure 2. All four conflicts in that figure are Type-A, because each of
them is between requirements belonging to alternative solutions. Given these four
conflicts, there are 24 alternative solutions in that figure. Not tolerating these
conflicts means eliminating them as the requirements database gets constructed:
in Figure 2, suppose that g(q1) was identified first, and then g(p1). Not tolerating
the conflict between t(u1) and t(u3) would consist of choosing to keep one of
these two, regardless of other requirements. This would eliminate the conflict
between t(u1) and t(u3), but it would also reduce the number of alternative
solutions from 24 to 23.

To define the Type-A conflict relation, the concept of alternative is introduced.

Definition 5.12. Given a set Π ⊆τ ∆, ΦΠ ⊂τ Π is an alternative in Π if and
only if:

1. all members of Π are in conflict;

2. ΦΠ 6|v1 ⊥;

3. ∀Ψ ⊆τ Π s.t. Ψ 6|v1 ⊥, ΦΠ 6⊂τ Ψ;

4. ΦΠ 6⊆τ Πk.

An alternative is a set of requirements which (1) is a subset of a conflicting
set of requirements (i.e., ΦΠ is an alternative in Π, and Π must be in conflict), (2)
is consistent, (3) is a maximally consistent subset of Π, and (4) cannot include
only domain assumptions.

The set of all alternatives in Π is denoted Alt(Π). �

An alternative identifies one potential resolution of a Type-A conflict. In-
formally, one can resolve the Type-A conflict by choosing an alternative over
others in that conflict.

The important property of an alternative is that it cannot only include
domain assumptions. An alternative must include a goal or task because the
purpose of an alternative is precisely to allow the distinction between candidate
solutions. A solution will be made by the consistent combination of alternatives,
which also together satisfy the properties of a solution given earlier.

Definition 5.13. There is a Type-A conflict relation between the members of
Π if and only if:

1. all members of Π are in a conflict relation;
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2. |Alt(Π)| ≥ 2.

As soon as there are two alternatives in a conflict, it is a Type-A conflict. �

In Figure 2, every conflict is a Type-A conflict. As an alternative contains
goal and/or tasks, and a Type-A conflict involves at least two alternatives, it is
useful to tolerate Type-A conflicts. Their premature resolution results in the
elimination of candidate solutions.

Type-B Conflict. When there is at most one alternative in a conflict, it is
a Type-B conflict. Informally, a Type-B conflict involves domain assumptions
which are blocking the satisfaction of goals or the execution of tasks.

Definition 5.14. There is a Type-B conflict relation between the members of
Π if and only if:

1. all members of Π are in a conflict relation;

2. |Alt(Π)| = 1.

The set of blockers is the set Block(Π)
def
= Π \ Alt(Π). �

There are no Type-B conflicts in Figure 2. For illustration, suppose that
g(p6 : Incident location identified automatically) and that k(r2 : Callers report
imprecise incident location), and that there is an axiom k(g(p6) ∧ k(r2)→ ⊥).
If there was no domain assumption k(r2), one could choose to find a way to
operationalize g(p6) and include it in a candidate solution. k(r2) itself is not
desirable, it is simply believed to hold; since g(p6) is desired, this conflict can be
informally interpreted as that k(r2) is blocking g(p6).

The purpose of the Type-B relation is to make explicit cases when assumptions
about the domain are blocking goals and/or tasks. A Type-B thus seems to
suggest how to resolve the conflict, namely, by finding good reasons either to
keep the blockers or to eliminate them.

Type-C Conflict. A conflict relation where there are no alternatives is a
Type-C conflict. It involves a minimally inconsistent set which includes only
domain assumptions.

Definition 5.15. There is a Type-C conflict relation between the members of
Π if and only if:

1. all members of Π are in a conflict relation;

2. |Alt(Π)| = 0.

There are no blockers in a Type-C conflict, as all requirements involved in the
conflict are domain assumptions. �
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Conflict, Obstruction, Divergence. In kaos, the Conflict relation is also
a minimally inconsistent set of requirements. The main difference is in the
consequence relation, which is classical there, and paraconsistent here. Ob-
struction and Divergence are two relations, also in kaos, which involve domain
assumptions that block, in the sense discussed above, the satisfaction of a goal
or the execution of a task.

Table 3 summarizes the translation of conflict relations identified in Robinson,
Pawlowski & Volkov’s survey [26] into T1. Conflicts listed in that table cannot
obtain in T1 definitions as convenient as, e.g., Type-A, Type-B, or Type-C
relations. In a propositional formalism, there is no elegant way to formally
talk about instances of classes, and their deviations: a proposition stating the
deviation of an instance will be different from a proposition stating normal
behavior of other instances, but there is no relation which would say that the
two propositions talk about instances of the same class.

5.5 Database Interface

The database interface should include operations that return methodologically
relevant answers from a given requirements database ∆, which includes the
axioms, domain assumptions that are not axioms, tasks, and goals, as well as
the various kinds of inference and conflict relations between them.

The methodological questions are essentially those that support the incre-
mental construction of solutions. Asking any such question should result in
information that helps when choosing what to add, remove, or revise in a given
requirements database towards the construction of solutions.

To characterize operations that are relevant to this aim, filters can be defined,
whereby an operation should be an implementation of a filter. A filter is simply
an intensionally defined set. Calling it a filter applies in that the set will include
only information having certain properties, and these properties will have some
relevance in the construction of solutions, in the identification of solutions, and
the identification and resolution of conflicts. The method applied to define these
operations involves choosing a question to answer, then determining the necessary
properties of expressions (their modality, their participation in inference and
conflict relations) to find in the answer.

The result is an operation which returns the answers to a question of interest.
This method is only relevant for filters which should return implicit information.
Relevant operations on explicit information are obvious: an operator per modality,
which returns all expressions of a given modality (i.e., an operator which returns,
for a given Π, Πx) and an operator which returns all axioms.

For a requirements database ∆, sets of answers of interest are defined below.
The definition of specific consequence relations comes after the answer sets are
defined.

Proto-Solutions. A proto-solution is a maximally consistent subset of ∆. It
is a proto-solution because, by being maximally consistent, it can be made into
a solution. E.g., it may lack operationalizations for some goal, so adding an
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Table 3: Translation to T1 of the conflict relation types in Robinson, Pawlowski
& Volkov’s survey [26].

Relation in the survey Corresponding relation in T1

Process-level deviation: deviation of the ac-
tual process of developing the system from
the predefined process.

Either a Type-B conflict, in which the
blocker is a domain assumption stating the
deviation between the planned and actual
development process, or a Type-C conflict
where one of the domain assumptions states
that deviation.

Instance-level deviation: an instance of an
implemented class violates a requirement.

A Type-B conflict, which has one blocking
domain assumption. That domain assump-
tion names the instance responsible for the
violation, and the alternative in the Type-B
is the requirement violated by that instance.

Terminology clash (also Structure clash):
a member of the semantic domain is be-
ing referred to using more than one sym-
bol/expression.

None of the conflict relations captures ter-
minology clashes. The terminology clash is
an error in the use of the formalism.

Designation clash: a symbol/expression
refers to two or more different members
of the semantic domain.

As for the terminology clash, a designation
clash is an error in the use of the formalism,
and cannot be captured in the formalism.

Conflict : a set of requirements is logically
inconsistent.

Conflict relation.

Divergence (also Obstruction): A set of
requirements is logically inconsistent when
a certain sequence of events can occur.

A Type-B conflict, where the blocked re-
quirements are an alternative and the
blocker is a domain assumption describing
the problematic sequence of events.

Competition: A kind of divergence where
particular instances of a requirement can
cause a divergence.

A Type-B conflict, which has one block-
ing domain assumption. That domain as-
sumption names the instance responsible
for the violation, and the alternative in the
Type-B is the requirement violated by that
instance.
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operationalization to a proto-solution is relevant. It may also be missing a goal,
because the goal is involved in a conflict; in such a case, the maximally consistent
subset still remains a relevant starting point for the construction of a solution.

The set of all proto-solutions is AMCon(∆), and to find it, it is necessary to
know the set of all consistent subsets of ∆, ACon(∆):

ACon(∆) ={Π ⊆τ ∆ | Π 6|v1 ⊥}, (5.18)

AMaxCon(∆) ={Π ∈ ACon(∆) | ∀Φ ∈ ACon(∆), Π 6⊂τ Φ}. (5.19)

AMaxCon(∆) and ACon(∆) are independent of modalities. They are con-
sequently not specific to databases of requirements: they remain relevant (as
long as the consequence relation is relevant) whenever there is a need to find
plausible parts of an inconsistent database. It is by restricting answer sets using
modalities that they become specific to requirements databases.

Goals. Given a proto-solution, one needs to decide how to change it towards
the status of a solution. Let Π ∈ AMaxCon(∆) be the proto-solution.

To decide how to change Π, start by identifying top-level goals in ∆:

AGTop(∆) = {φ | φ ∈ ∆g and 6 ∃ψ ∈ ∆, φ ∈
⋃

Op(ψ)} (5.20)

If AGTop(∆) 6⊆ Π, then there are top-level goals which are involved in conflicts.
No proto-solution will include them. No proto-solution can consequently be
made into a solution before conflicts involving top-level goals are resolved.

Suppose that AGTop(∆) ⊆ Π, so that all top-level goals are in the proto-
solution. It is then relevant to determine if some of these goals lack operational-
izations in Π. The set

AGnOp(Π) = {φ | φ ∈ Πg and |Op(φ)| ≥ n} (5.21)

includes all goals which have at least n operationalizations in Π. If n = 1 and
AGTop(∆) ⊆ AG1Op(Π), then all top-level goals are operationalized in Π, so
that Π is a solution according to Definition 5.5.

If n = 1 and AGTop(∆) 6⊆ AG1Op(Π), then operationalizations of goals in
AGTop(∆) \AG1Op(Π) should be made so as to be consistent with Π and added
to ∆.

Tasks. If a task does not participate in a premise of an argument, then its role
in the database should be reconsidered. The following set returns all such tasks:

ATNoArgPrem(∆) = {φ ∈ ∆t |6 ∃(Π, ψ) ∈ Arg(∆), φ ∈ Π}. (5.22)

When a task is in ATNoArgPrem(∆) it may be the case that there is an
axioms which includes that task in its antecedent, but not all of the antecedents
are present in the database. E.g., there is φ∧ψ → γ in ∆, but φ ∈ ∆ and ψ 6∈ ∆.
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Detecting this requires an operation which returns, for a given requirement, all
axioms where that requirement is in the antecedent and the consequent is not ⊥.
Such an operation involves no deductions on ∆. Let this operation be as follows:

AxiomAnte(φ) = {ψ ∈ ∆→ |φ is among the antecedents of ψ

and ⊥ is not the consequent of ψ}. (5.23)

The set of “aimless” tasks is then:

ATAimless(∆) = ATNoArgPrem(∆) \ {φ | AxiomAnte(φ) = ∅}, (5.24)

which are all tasks that do not participate in arguments, and there are no axioms
in which such tasks are among the antecedents. It is useful to reconsider the
role of these tasks in the database.

A subset of ATNoArgPrem that of interest for the construction of solutions is
the subset of tasks which participate in no operationalizations of goals. This set
is as follows:

ATNoOp(∆) = {φ | φ ∈ ∆t and 6 ∃ψ ∈ ∆g, φ ∈
⋃

Op(ψ)}. (5.25)

It is straightforward to show that ATNoOp(∆) ⊆ ATNoArgPrem(∆), and that
ATNoArgPrem(∆) 6⊂ ATNoOp(∆).

The level of detail of lowest-level tasks can be compared. Lowest-level tasks
are those which cannot be deduced from other information in ∆. If the level
of detail of lowest-level tasks differs strongly, it may be relevant to decompose
tasks which are judged to lack detail. This in turn can lead to the detection of
conflicts. The set ATNoArgConc(∆) includes all tasks which are not conclusions
of arguments:

ATNoArgConcl(∆) = {φ ∈ ∆t |6 ∃(Π, φ) ∈ Arg(∆)}. (5.26)

As for ATNoArgPrem, note that there may be axioms which have a task φ as
their consequent, but arguments for φ may still be missing because some of the
antecedents may be missing from ∆. Hence the following operation:

AxiomCons(φ) = {ψ ∈ ∆→ | φ is the consequent of ψ}, (5.27)

which gives all axioms with φ as their consequent. The following set:

ATBasic(∆) = ATNoArgConcl(∆) \ {φ | AxiomCons(φ) = ∅}, (5.28)

includes all “basic” tasks, which are neither conclusions of arguments, nor are
consequents in axioms. If a task is in this set, then no attempts have been made
to decompose or refine it.
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Domain assumptions. For domain assumptions which are not axioms, the
interesting questions are analogous to those for tasks. Hence the following answer
sets:

AKNoArgPrem(∆) ={φ ∈ ∆k |6 ∃(Π, ψ) ∈ Arg(∆), φ ∈ Π}, (5.29)

AKAimless(∆) =AKNoArgPrem(∆) \ {φ | AxiomsAnte(φ) = ∅}, (5.30)

AKNoOp(∆) ={φ | φ ∈ ∆k and 6 ∃ψ ∈ ∆g, φ ∈
⋃

Op(ψ)}, (5.31)

AKNoArgConcl(∆) ={φ ∈ ∆t |6 ∃(Π, φ) ∈ Arg(∆)}, (5.32)

AKBasic(∆) =AKNoArgConcl(∆) \ {φ | AxiomsCons(φ) = ∅}. (5.33)

Uncommon Relations. The operationalization function induces the oper-
ationalization relation, which states that a requirement is operationalized by
combinations of tasks and/or domain assumptions (cf., Definition 5.4). This,
together with the other relations derived from the inference relation, is not
enough to account for all potential combinations of modalities in an inference
relation. There is no explicit rule in T1 which forbids that, say, goals be the
premises and a domain assumption be a conclusion in an inference relation.

Table 4: Additional combinations of modalities in an inference relation. These
relations are additional specializations of the inference relation.

Relation Allowed premises Allowed conclusion

Inference Any + Axioms Any
Assumption inference Any + Axioms Domain assumption
Task inference Any + Axioms Task
Goal inference Any + Axioms Goal

Table 4 gives a clearer specialization of the inference relation than Table 2.
In the former, there are no constraints on modalities in premises, but on the
conclusion, and the three inference variants given cover all three modalities in
T1. The definitions of the three specializations of inference are not given, as
they are straightforward adaptations of Definition 5.6. It is also not difficult to
see that some of the relations in Table 2 are specializations of those in Table 4.

Uncommon relations are those where the combination of the modalities in
the premises and conclusion are unexpected, given the usual relations used in
re formalisms, such as goal refinement, task decomposition, and so on (cf.,
§5.4). Examples include a domain assumption being decomposed onto goals,
tasks decomposed onto goals, and so on. It is useful to consider such relations
individually to see whether they make sense, or signal errors in the use of the
formalism. The following answer sets are useful to this aim:
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AGUnc(∆) = {φ ∈ ∆g |∃(Π, ψ) ∈ Arg(∆) and ψ ∈ ∆t ∪∆k

and φ ∈ Π}, (5.34)

ATUnc(∆) = {φ ∈ ∆t |∃(Π, ψ) ∈ Arg(∆) and ψ ∈ ∆k and φ ∈ Π}. (5.35)

AUncG returns all goals which participate in premises of inference relations
that conclude a task or a domain assumption. Informally, the goal is in a
refinement of a task/domain assumption. AUncT returns the tasks which are in
premises of inferences that conclude domain assumptions, i.e., tasks which refine
a domain assumption.

Conflicts. The following answer sets serve to understand better the conflict
relations in a requirements database:

AC(∆) ={Π | Π |v1 ⊥ and 6 ∃Φ ⊂ Π, Φ |v1 ⊥}, (5.36)

ACTypeA(∆) ={Π ∈ AC(∆) | |Alt(Π)| ≥ 2}, (5.37)

ACTypeB(∆) ={Π ∈ AC(∆) | |Alt(Π)| = 1}, (5.38)

ACTypeC(∆) ={Π ∈ AC(∆) | |Alt(Π)| = 0}, (5.39)

ABlockers(∆) ={φ ∈ Π | Π ∈ ACTypeB(∆) and φ 6∈ Alt(Π)

and φ 6∈ ∆→}, (5.40)

AC is the set of all minimally inconsistent subsets of ∆. Requirements in
each of these subsets is in conflict. ACTypeA, ACTypeB, and ACTypeC return
subsets of ∆ which are in one of the three specializations of the conflict relation.
ABlockers is the set of all requirements which act as blockers in Type-B conflicts.

5.6 Discussion

T1 has a simple ontology which has three primitive concepts (g, k, t) and three
primitive relations (conjunction, implication, and consequence). It was shown
that already this set of notions allows the definition of a wide variety of relations
common in re formalisms. T1 can thereby capture various kinds of refinement
and decomposition, and allows a definition of the requirements problem and
solution concepts which correspond to zj’s definitions. Limitations of T1 will
become clear as additional Techne formalisms are introduced.

6 T2

T2 extends T1 with agency modalities, which capture four kinds of primitive
relations:

1. Responsibility : that a role is responsible for the achievement of a goal, the
maintenance of a domain assumption, or the execution of a task;
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2. Ability : that an agent is able to achieve a goal, maintain a domain assump-
tion, or execute a task;

3. Occupancy : that an agent should occupy a role, and thereby should act to
discharge the responsibilities of the role;

4. Commitment : that an agent chooses to achieve a goal, maintain a domain
assumption, or execute a task.

All four relations are binary, and the syntax of T2 is such that responsibility,
ability, and commitment are each between roles and requirements (i.e., goals,
tasks, and domain assumptions which are not axioms), and occupancy and
commitment are both from agents to roles.

The four relations require the introduction of agents and roles as extensions
of the corresponding Agent and Role primitive concepts. Agency modalities are
combinations of an agent or of a role, and of a relation of that agent/role to a
requirement. E.g., Rig(p) says that role Ri is responsible for the satisfaction of
the goal g(p).

Responsibility and occupancy can be viewed as stating the desired com-
binations of responsibilities and of agents discharging these responsibilities.
Responsibility bundles requirements by associating them to a role, independently
of whether one can actually find an agent capable of satisfying all the bundled
requirements. Responsibility is a desired way of grouping requirements in order
to distributed them across agents. Occupancy is used to state desired alloca-
tions of agents to roles. In this same perspective, ability and commitment are,
respectively, about which agents are able to discharge responsibilities and which
of them choose (i.e., commit) to do so.

Overall, T1 was blind to agents, roles, and the relations relevant for the
distribution and discharging of responsibilities to satisfy requirements, while T2
makes these considerations explicit.

6.1 Illustration

The original manual las involved the following major activities [8]:

Call taking: Control Assistants at the las control center would write
down the details on a pre-printed form. The assistants would then
locate the incident co-ordinates in their map book and place the
completed forms on a conveyor belt transporting all the forms to a
central collection point.

Resource identification: Another assistant would collect the forms,
scan the details, identify potential calls, and allocate them to one
of the four regional resource allocators. The appropriate resource
allocator would examine the incident forms, consult ambulance status
and location information provided by the radio operator, consult the
remaining forms maintained in the allocation box for each vehicle,
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and finally decide on which resource (ambulance) to mobilize. The
ambulance details would be entered on the form.

Resource mobilization: The forms would be passed to a dispatcher
who would then phone the relevant ambulance station (if that is
where the ambulance was assumed to be) or pass the mobilization
instructions to the radio operator, if the ambulance was known to be
mobile.

In T1, the fragment “Control Assistants at the las control center would write
down the details on a pre-printed form” could be written as a goal, operationalized
via a goal and task:

g(p1: Control Assistant acquires incident details);

t(p2: Control Assistant writes incident details on a pre-printed form);

whereby the task would operationalize the goal via the domain assumption
k(t(p2)→ g(p1)).

In T2, this same fragment is rewritten as follows. Firstly, the roles and
agents are taken out of propositions, which gives:

g(p1: Acquire incident details);

t(p2: Write incident details on a pre-printed form).

Apart from eliminating roles and agents from propositions, other departures
from T1 are as follows:

• Control Assistant is a role, denoted R1, in las. This role is responsible for
the execution of the task above, which is written R1t(p2).

• If k(t(p2)→ g(p1)) ∈ ∆, then the task operationalizes the goal. If the goal
is the responsibility of R1 and the goal is the responsibility of R2, then the
three-place derived relation between the two roles and the domain assump-
tion k(t(p2)→ g(p1)) can be read as that R2 delegates the satisfaction of
the goal g(p1) to the role R1.

• The domain assumption remains the same, k(t(p2)→ g(p1)). Contra T1,
it is now not enough to have this domain assumption to operationalize
g(p1): it is also necessary to identify an agent able to execute the task,
and commits to execute the task. In the case of las, there may be agents,
e.g., A (employees in the manual system) who is able to execute the task,
written At(p2), and who also commit to the task, written cAt(p2).

• Operationalization becomes more complicated in T2, as it requires addi-
tional conditions to be satisfied compared to operationalization in T1. To
operationalize g(p1), there should be, as in T1, the domain assumption
k(t(p2)→ g(p1)), but also (i) Rt(p2), i.e., that the task is the responsibility
of a role, (ii) At(p2), that there is an agent able to execute the task, (iii)
cAt(p2), that the agent commits to the task, and finally (iv) O(R,A), that
the agent occupies the role responsible for the task.

40



To illustrate this last point, consider the Resource mobilization fragment
quoted above. A general goal can be set, g(p3), where p3 is for Pass mobilization
instructions to ambulance. Suppose that this goal was made the responsibility of
some role R4, so that R4g(p3). This is a problem, since the agent occupying this
role would have to radio the instructions to ambulances outside stations, and
phone ambulances in stations. The simpler option is to refine g(p3) onto g(p4)
and g(p5), where p4 is for Pass mobilization instructions to ambulances in stations
and p5 is for Pass mobilization instructions to ambulances outside stations. To
complete this refinement, the domain assumption k(g(p4) ∧ g(p5) → g(p3)) is
needed, as well as two roles, R5 and R6, such that R5g(p4) and R6g(p5). R4 can
be viewed as an intermediary role: the responsibilities of this role have been
refined, and new roles defined for these more detailed responsibilities, there is
no need in a solution to keep the intermediary role. Agents will be discharging
the responsibilities of that role by occupying other roles.

A final, important departure of T2 from T1 is the change in the concep-
tualization of the solution concept. In T1, it was necessary to find domain
assumptions and tasks, and goals were not allowed. Suppose now that there is
an agent A such that Ag(p). Assume further that Rg(p) and O(R,A). In words,
A occupies the role R, R is responsible for g(p), and A is able to achieve p, i.e.,
to satisfy the goal g(p). In this case, it is reasonable to decide that one knows
enough, and that g(p) is already operationalized by being assigned to an agent
capable of satisfying the goal.

6.2 Formalization

Semantic Domain. Objects in the semantic domain are natural language
propositions, agents, and roles. Propositions in natural language are partitioned
into the extensions of Goal, Domain assumption, and Task concepts. Instances of
goals, domain assumptions, and tasks are related to agents and roles via three
relations. A combination of agent/role and of a relation to a proposition defines
a modality on the proposition, as follows:

Rig(p): role referred to by the symbol Ri is responsible to achieve p;

Rik(p): Ri is responsible for the maintenance of p;

Rit(p): Ri is responsible for the execution of p;

Aig(p): agent referred to by the symbol Ai is able to achieve p;

Aik(p): Ai is able to maintain p;

Ait(p): Ai is able to execute p;

cAig(p): Ai commits to achieve p;

cAik(p): Ai commits to maintain p;

cAit(p): Ai commits to execute p.
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There are five primitive relations. Conjunction and implication are as in
T1. Consequence is again nonstandard, and is defined below. Responsibility,
ability and commitment are informally interpreted as above. Finally, occupancy
(O(R,A)) relates a role to an agent who occupies that role, i.e., the latter is
expected to discharge the responsibilities of the former.

Syntax. p, q, r, indexed or primed as needed, refer to natural language propo-
sitions. A and R are indexed, and denote, respectively, an agent and a role. The
language is a finite set L2 of all expressions φ ∈ L2 which satisfy the following
bnf specification:

a ::= g(p) | k(p) | t(p) (6.41)

b ::= Ra | Aa | cAa (6.42)

c ::= a | b | O(R,A) (6.43)

d ::= (

n≥1∧
i=1

ci)→ c | (
n≥1∧
i=1

ci)→ ⊥ (6.44)

φ ::= c | k(d) (6.45)

Conjunction and implication follow the grammar of T1. Syntax of T2
symbols for agents, roles, and the responsibility, ability and occupy relations.
Below are illustrations of the uses and limits of the grammar:

• Responsibility is only for roles, ability for agents. Agents are given re-
sponsibilities only by occupying roles, to reflect the idea that roles are
placeholders for agents within the system-to-be.

• To keep the combinations of modalities simple in T2, agency modalities are
not allowed closer to propositions than core modalities: e.g., g(Ra) is not
an expression. An expression stating responsibility, ability, or commitment
also cannot be a goal or a task. It can be a domain assumption, but only
when that domain assumption is an axiom.

• Responsibility, ability, commitment, or occupancy relations can be the
conclusion in an inference relation: e.g., k(p) → Rg(q) says that if the
goal g(p) is satisfied, then R is responsible for the satisfaction of g(q).
E.g., in the Resource identification description for the manual las, an
assistant, denote it R1, collects the forms on incidents and allocates them
to a resource allocator, R2. If it is the case that the agent A occupying R1

will occupy the role R2 also when k(p : Dispatch center overloaded), then
this can be written: k(k(p) ∧ O(R1,A)→ O(R2,A)).

• Responsibility, ability, commitment, and occupancy relations can be in
conflict, and they can individually be made impossible. E.g., if an agent A
cannot occupy two roles, R1 and R2, then k(O(R1,A) ∧ O(R2,A)→ ⊥). If
it is known that A is not able to φ, then Aφ→ ⊥ ∈ ∆.
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Semantic Mapping. The semantic mapping function relates members of L2

to objects in the semantic domain. The informal discussions given above explain
which symbols in L2 map to which objects and relations in the semantic domain.

Consequence Relation. The consequence relation |v2 is defined in the same
way as |v1 , even though the formal languages for each of these relations are
different.

Definition 6.1. For Π ⊆τ L2 and φ ∈ L2, the consequence relation |v2 is such
that:

• Π |v2 φ if φ ∈ Π, or

• Π |v2 x if ∀1 ≤ n, Π |v2 φi and k((
∧n
i=1 φi)→ x) ∈ Π.

�

Remarks on soundness and completeness made for |v1 apply for |v2 .

6.3 Problem & Solution Concepts

The requirements problem in T2 relies on an extended notion of operational-
ization compared to T1. A requirement can now be operationalized in two
ways:

• by assigning that goal to a role, and then having an agent occupy that
role, whereby the the agent is able to satisfy that goal and commits to do
so; it is not necessary in this case to know what tasks that agent is going
to execute to satisfy the goal;

• by identifying tasks and domain assumptions from which the goal can be
deduced (i.e., by searching for an oprationalization of the goal in the sense
of T1), assigning these tasks to roles, and having capable agents commit
to the tasks in these roles.

The change to the requirements problem is straightforward.

Definition 6.2. Given a set of goals, domain assumptions, and agents, find a
solution. �

This formulation is intentionally a very general one. It makes no assumptions
on the knowledge of roles, tasks, responsibility, ability, commitment, and occu-
pancy. It is instead assumed that there are agents, goals and conditions already
holding in the environment, and the problem consists of finding a solution to
how agents will satisfy the goals by occupying roles and while maintaining the
conditions that ought to hold. This general formulation fits the engineering of
new systems; when legacy systems exist, one starts from more information (e.g.,
roles already in the legacy system).

The select function in T2 is as follows.
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Definition 6.3. The select function is defined as follows:

Select(x,Π)
def
= {φ | φ has the modality x or φ ∈ Π→}. (6.46)

The part “or φ ∈ Π→” ensures that the output of the select function always
includes all axioms. A modality can be a core modality or an agency modality.
�

To simplify notation, the following abbreviations are used:

Select(x,Π) ≡ Πx, (6.47)
n⋃
i=1

ΠRi

def
= ΠR, (6.48)

n⋃
i=1

ΠAi

def
= ΠA. (6.49)

E.g., ΠRi is the set of all expressions where a requirement is assigned to the
role Ri. ΠO is the set of all expressions which fit the pattern O(Ri,Aj).

Given a φ, Op(φ) should return all operationalizations of φ. The subset
relations ⊆τ and ⊂τ defined for T1 apply in T2.

Definition 6.4. The operationalization function

Op : ∆ −→ ℘(℘(∆)) (6.50)

is such that Π ∈ Op(φ ∈ ∆) if and only if:

1. Π ⊆τ ∆, i.e., Π is a subset of ∆ and includes all axioms,

2. Π 6|v2 ⊥, i.e., Π is consistent,

3. Π |v2 φ, i.e., φ can be deduced from Π,

4. 6 ∃Φ ⊂ Π, Φ |v2 φ, i.e., Π is minimal,

5. ∀ψ ∈ Π \Π→ s.t. ψ 6∈ (∆R ∪∆A ∪∆cA ∪∆O):

(a) ∃Riψ ∈ ΠR, i.e., there is a role Ri responsible for ψ,

(b) ∃Ajψ ∈ ΠA, i.e., there is an agent Aj capable of ψ,

(c) ∃cAjψ ∈ ΠcA, i.e., there is an agent Aj who commits to ψ

(d) and ∃O(Ri,Aj) ∈ ΠO, i.e., Ri is occupied by Aj .

A Π ⊆τ ∆ is an operationalization of φ if it is consistent, can be used to deduce
φ, and includes only the necessary information to deduce φ. In addition, the
fifth condition requires that every member ψ of Π which is neither an axiom
nor a responsibility, ability, commitment, or occupancy relation, must be part
of the responsibilities of some role, and there must be an agent who occupies
the role, and is able and commits to satisfy, maintain, and/or execute ψ. �
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Below is a comparison of Op in T2 and Op in T1:

• Operationalization in T2 also requires that Π ∈ Op(φ) be consistent, that
it is enough to deduce φ, and that it is minimal.

• Op in T2 allows members of Π \ Π→ to be goals, and not only domain
assumptions and tasks as in T1. As mentioned above, the reason is that
there may be agents able to satisfy goals; if such agents are responsible
through roles to satisfy such goals, there is no need to know the tasks and
domain assumptions. Operationalization in T1 was blind to such cases,
where how a goal is satisfied remains hidden.5 Delegating a goal to an
agent via a role is thus an acceptable way to operationalize that goal.

• If Π is an operationalization of φ in T1, then it can be converted into an
operationalization of φ in T2 by adding roles responsible for members of
Π \Π→, agents able to and who commit to satisfy, maintain, or execute
members of Π \Π→, and having these agents occupy the roles.

• For illustration of Definition 6.4, consider the following sets, all three of
which are operationalizations of φ:

– {φ,Rφ,Aφ, cAφ,O(R,A)} ∪∆→: R is responsible for φ, agent is able
to φ, agent commits to φ, and A occupies R;

– {g(p1), t(p2), g(p1) ∧ t(p2) → φ}, to which responsibility is added
{R1g(p1),R2t(p2)}, ability {A1g(p1),A2t(p2)}, commitment {cA1g(p1), cA2t(p2)},
occupancy {O(R1,A1),O(R2,A2)}, and finally, axioms ∆→: φ is re-
fined onto g(p1) and t(p2), and each of the latter is the responsibility
of roles occupied by agents who are able to g(p1) and t(p2).

– Same as above, but replace g(p1) with t(p1): φ is operationalized via
two tasks, so the operationalization follows the pattern from T1 of
having tasks (or domain assumptions) among non-axioms.

The main difference between the solution concepts in T1 and T2 comes
from the differences in the operationalization functions of the two formalisms.
Otherwise, the solution concept in T2 still requires Consistency and Achievement.

Definition 6.5. A solution to the requirements problem given by a requirements
database ∆ ⊆ L2 is a set S ⊆τ ∆ which satisfies the following two properties:

1. Consistency : S 6|v2 ⊥;

2. Achievement : ∀φ ∈ ∆g s.t. 6 ∃ψ, φ ∈
⋃

Op(ψ) and ∃Π ∈ Op(φ) s.t. Π ⊆ S.

�
5One can obviously change in T1 the modality of a goal to a task, and thus abstain from

having to operationalize what was initially a goal. This trick still misses the information about
responsibility and ability that T2 adds.
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6.4 Derived Relations

The inference and conflict relations, and all their specializations defined for T1
are carried over to T2, with the only change that in the definition of each, |v2
replaces |v1 . There is no need to repeat those definitions here.

This section develops relations which include information on agents, roles,
and the responsibility, ability, commitment, and occupancy relations.

6.4.1 Dependency Relations

Let R1 denote the Control Assistant role in the manual las, and let g(p1) be
such that R1g(p1) and p1 is for Acquire incident details. The acquired incident
details are then passed onto another assistant, denote it R2, who has the goal
g(p2), where p2 is for Allocate incident details, so that R2g(p2).

Any agent, say A2 who occupies R2 will be able to achieve g(p2) only if the
goal g(p1) is achieved. This can be formalized by asking that A2g(p2) be deduced
if g(p1) can be deduced, so that there ought to be k(g(p1) → A2g(p2)) in the
requirements database.

The pattern k(φ→ Aiψ), where φ, ψ ∈ ∆ \∆→ is used to define the depen-
dency relation, as follows.

Definition 6.6. There is a dependency relation from an agent Ai to Π ⊆ ∆\∆→
iff k(

∧
Π→ Aiφ) ∈ ∆→, i.e., if Ai is able to ψ if

∧
Π. �

Given a dependency φ→ Aiψ, if there is also Rjφ, then it can be said that
Ai depends on Rj . Several kinds of the dependency relation can be defined
depending on the information present in and absent from ∆.

Table 5 defines the specializations of the dependency relation.

Table 5: Specialization of the dependency relation; replacing φ with
∧

Π is
straightforward, and is avoided to simplify notation in the table.

Relation Definition

Ai depends on φ k(φ→ Aiψ) ∈ ∆→.
Ai depends on Rj k(φ→ Aiψ) ∈ ∆→ and either Rjφ ∈ ∆, or φ ≡ Rjγ.
Ai depends on Aj k(φ → Aiψ) ∈ ∆→ and either Ajφ ∈ ∆, or φ ≡ Ajγ, or

cAjφ ∈ ∆, or φ ≡ cAjγ.
Ri depends on φ k(φ→ Aiψ) ∈ ∆→ and Riψ ∈ ∆ and O(Ri,Ai) ∈ ∆.
Ri depends on Aj k(φ→ Aiψ) ∈ ∆→ and Riψ ∈ ∆ and O(Ri,Ai) ∈ ∆ and

either Ajφ ∈ ∆, or φ ≡ Ajγ, or cAjφ ∈ ∆, or φ ≡ cAjγ.
Ri depends on Rj k(φ→ Aiψ) ∈ ∆→ and Riψ ∈ ∆ and O(Ri,Ai) ∈ ∆ and

either Rjφ ∈ ∆, or φ ≡ Rjγ.

In i-star [37], the dependency relation can be between roles, between agents,
and between agents and roles. The dependency relation in T2 formalizes and
generalizes the i-star dependency relation by allowing an agent/role to depend
on (i) one or more requirements which are not tied yet to agents and/or roles, (ii)
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one or more agents (e.g., for the case of two agents, replace φ with, e.g., φ1 ∧ φ2

and have two agents able, respectively, to φ1 and φ2), (iii) one or more roles.

6.4.2 Conditional Responsibility Relations

The conditional responsibility relation relies on the axiom pattern k(φ→ Riψ).
It indicates that Ri becomes responsible for ψ when φ. The relation can be used
to indicate that the assignment of responsibility depends on the satisfaction of
requirements: e.g., if the Resource Allocator role Ri in las becomes responsible
for the goal g(p1), p1 for Phone ambulances in stations when k(p2), p2 for
Dispatch center overloaded, then there is a conditional responsibility relation
k(k(p2)→ Rig(p1)).

The conditional responsibility relation is defined by analogy to the dependency
relation.

Definition 6.7. There is a conditional responsibility relation from Π ⊆
∆ \∆→ to a role Ri iff k(

∧
Π → Riφ) ∈ ∆→, i.e., if Ri is responsible for ψ if∧

Π. �

The conditional responsibility relation can be specialized in the obvious way
by changing the cardinality of Π and the modalities of its members, as the syntax
of T2 allows.

6.4.3 Commitment Relations

An agent can commit to a role, or to another agent, which gives two kinds of
the commitment relation.

Definition 6.8. Agent Ai commits to agent Aj 6= Ai if and only if cAiφ ∈ ∆ and
k(φ→ Ajψ) ∈ ∆→, i.e., if Aj depends on φ and Ai commits to φ. �

Definition 6.9. Agent Ai commits to role Rj if and only if ∃(Π, ψ) ∈ Arg(∆) such
that φ ∈ Π and Rjψ ∈ ∆, i.e., there is an argument for ψ, φ is in the premises
of that argument, and there is a role responsible for ψ. �

Singh has argued that commitment should be considered a primitive relation
when used for the modeling and reasoning about multi-agent systems (e.g.,
[29]). His commitment relation is a tuple of the form C(x, y,G, p), read “agent x
commits on proposition p to agent y in context G”. Both Singh’s commitment and
cA are primitive relations, and both require agents, not roles. The information
in ∆ which corresponds to a four-place commitment relation is the following:

C(x, y,G, φ) ≡{cAxφ, k(φ)→ Ayψ} ∪G ⊆ ∆ (6.51)

and {cAxφ, k(φ)→ Ayψ} ∪G 6|v2 ⊥. (6.52)

Observe the following:

• Singh’s context G is not explicitly a set of expressions, but a group of
agents occupying roles. This is not an issue since T2 relates requirements
to agents via responsibility assignments to roles, whereby roles are occupied
by agents. In other words, Singh’s group is here a set of responsibility,
occupancy, and ability relations.
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• A major difference between Singh’s commitment relation and commitment
in T2 is that the former allows a commitment to be about other com-
mitments: it is thus possible to say that an agent commits to assign a
commitment to another agent. Since T2 does not allow a commitment to
appear as a parameter in cA, a commitment in T2 cannot refer to another
commitment.

6.4.4 Delegation Relations

Suppose a role R1 is responsible for the goal g(p), and that the goal is refined
onto two tasks, t(q1) and t(q2), so that k(t(q1)∧ t(q2)→ g(p)) ∈ ∆→. If the role
R1 is not responsible for both of these tasks, then there is a delegation relation
from R1 to the roles responsible for these two tasks. If R2t(q1) and R3t(q2) are
both in ∆, then the delegation relation is from R1 to the two roles R2 and R3.

Definition 6.10. There is a delegation relation from a role Ri to a set of roles
{R1, . . . ,Rn≥1} if and only if:

1. Riφ ∈ ∆, i.e., Ri is responsible for φ,

2. ∃(Π, φ) ∈ Arg(∆) s.t. ∀Rj ∈ {R1, . . . ,Rn}, ∃ψ ∈ Π \∆→ and Rjψ ∈ ∆, i.e.,
every role in {R1, . . . ,Rn} is responsible for a member of Π \∆→;

3. ∃Rj 6= Ri, Rj ∈ {R1, . . . ,Rn}, i.e., at least one of the roles responsible for
the members of Π \∆→ is different than Ri.

�

Table 6 lists relations obtained by specializing the delegation relation.

Table 6: Specialization of the delegation relation.

Relation Definition

Ri delegates to {R1, . . . ,Rn≥1} Definition 6.10.
Ri delegates goal to {R1, . . . ,Rn≥1} Definition 6.10 and φ ≡ g(p).
Ri delegates task to {R1, . . . ,Rn≥1} Definition 6.10 and φ ≡ t(p).
Ri delegates k to {R1, . . . ,Rn≥1} Definition 6.10 and φ ≡ k(p).

Delegation generates dependency relations. When there is a delegation from
a role to other roles, the agent occupying the former depends on agents occupying
the latter. This can be formalized with the following macro on the requirements
database:

Definition 6.11. The dependency from delegation macro is the defined as
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follows:

If

Riφ ∈ ∆ and

∃(Π, φ) ∈ Arg(∆), ∀Rj ∈ {R1, . . . ,Rn}, ∃ψ ∈ Π \∆→, Rjψ ∈ ∆ and

∃Rj 6= Ri, Rj ∈ {R1, . . . ,Rn} and

O(Ri,Ai) ∈ ∆

then

Add k(
∧

(Π \Π→)→ Aiφ) to ∆.

In words, if (i) Ri is responsible for φ, and (ii) Π is sufficient to deduce φ, and
(iii) there are roles responsible for members of Π \∆→, and (iv) at least one
of these roles is different from Ri, and (v) agent Ai occupies Ri, then add the
dependency of Ai on Π \Π→. �

The macro adds the minimal condition for the presence of a dependency
relation. It is then straightforward to determine which kind of dependency
results from the delegation, based on the definitions of the various specialization
relations in Table 5.

6.4.5 Inference Relations

The inference relation and its associated argument concept remain essentially
the same in T2 as in T1, except for the obvious change in definitions from |v1
to |v2 .

The relationships on roles and agents in T2 result in revised goal refinement,
task decomposition, and goal operationalization (and means-ends) relations.
These differences are visible in Table 7, and are as follows:

• Every requirement in a refinement of a goal should be the responsibility of
a role;

• Roles responsible for requirements in a refinement should all be occupied
by agents;

• Agents who occupy the said roles should be able to discharge the responsi-
bilities of these roles.

To simplify the definition of the said relations, the operational argument
concept is introduced as follows.

Definition 6.12. The argument (Π, φ) ∈ Arg(∆) is an operational argument if
and only if:

1. ∀ψ ∈ Π \∆→, ∃Riψ ∈ ∆, i.e., there is a role responsible for every require-
ment in the premises of the argument;

2. ∀ψ ∈ Π \ ∆→, ∃Ajψ ∈ ∆, i.e., there is an agent able to satisfy every
requirement in the premises of the argument;
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3. ∀ψ ∈ Π \∆→, if Riψ ∈ ∆ and Ajψ ∈ ∆, then O(Ri,Aj) ∈ ∆, i.e., the agent
able to satisfy a requirement in the premises of the argument occupies the
role responsible for the satisfaction of the requirement.

�

Table 7: Specialization of the inference relation.

Relation Definition

Goal refinement of g(p) (i) ∃(Π, g(p)) ∈ Arg(∆) and (ii) Π \∆→ ⊆ ∆g and
(iii) (Π, g(p)) is an operational argument.

Task decomposition of t(p) ∃(Π, t(p)) ∈ Arg(∆) and (ii) Π \∆→ ⊆ ∆g ∪∆t
and (iii) (Π, g(p)) is an operational argument.

Goal operationalization of g(p) ∃(Π, g(p)) ∈ Arg(∆) and (ii) Π \ ∆→ ⊆ ∆t and
(iii) (Π, g(p)) is an operational argument.

Means-ends, with g(p) as “ends” Same as Goal operationalization.

6.4.6 Conflict Relations

The conflict relation in T1 required that two conditions be satisfied for the
members of a set Π \∆→ to be in conflict: (i) there must be an axiom, in which
the antecedent is the conjunction of all members of Π \∆→, and the consequent
of which is ⊥, and (ii) the set Π \∆→ should be minimal, i.e., no subset thereof
is itself inconsistent.

The two conditions, inconsistency and minimality remain applicable in T2.
The conflict relation is defined in the same way as in T1, except that |v1 is
replaced with |v2 . Moreover, specialization to Type-A, Type-B, and Type-C
remains applicable, again with the exception that |v1 gets replaced with |v2 . This
is summarized in the first four lines of Table 8. The remainder of the Table lists
further and straightforward specializations of the conflict relations. Note that
the specializations onto Type-A, -B, and -C do partition the extension of the
Conflict relation. However, the specialization of Type-A onto Responsibility,
Ability, Occupancy, and Commitment Conflict is obviously not a partition of the
extension of Type-A. Rather, these cover interesting and homogeneous parts of
that extension: what is missing for example is a Type-A relation where members
of an alternative do not all have the same modality.

6.5 Database Interface

The database interface for ∆ ⊆ L2 needs all filters defined for T1. The notion
of a proto-solution is still relevant in T2, as are filters defined for goals, tasks,
domain assumptions, and conflicts. Filters added here apply to the new relations
in T2. Filters are as follows; in every filter, y ∈ {R,A, cA,O(R,A)}:
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Table 8: Specialization of the conflict relation. For each conflict relation, members
of {φ1, . . . , φn≥1} are in conflict.

Relation Definition

Conflict (i) ∃k((
∧n≥1

i=1 φi) → ⊥) ∈ ∆, and (ii) 6 ∃Π ⊂ {φ1, . . . , φn≥1}
s.t. Π ∪∆→ |v2 ⊥.

Type-A Conflict (i) {φ1, . . . , φn≥1} are in conflict, and (ii) Alt(Π) ≥ 2.
Type-B Conflict (i) {φ1, . . . , φn≥1} are in conflict, and (ii) Alt(Π) = 1.
Type-C Conflict (i) {φ1, . . . , φn≥1} are in conflict, and (ii) Alt(Π) = 0.

Specialization of Type-A Conflict:

Responsibility Conflict (i) Φ = {φ1, . . . , φn≥1} are in Type-A conflict, and (ii) every
alternative ΨΦ from Φ is such that every member of ΨΦ \∆→

is a responsibility relation (i.e., fits the pattern Riφ).
Ability Conflict (i) Φ = {φ1, . . . , φn≥1} are in Type-A conflict, and (ii) every

alternative ΨΦ from Φ is such that every member of ΨΦ \∆→

is an ability relation (i.e., fits the pattern Aiφ).
Occupancy Conflict (i) Φ = {φ1, . . . , φn≥1} are in Type-A conflict, and (ii) every

alternative ΨΦ from Φ is such that every member of ΨΦ \∆→

is an occupancy relation (i.e., fits the pattern O(Ri,Aj)).
Commitment Conflict (i) Φ = {φ1, . . . , φn≥1} are in Type-A conflict, and (ii) every

alternative ΨΦ from Φ is such that every member of ΨΦ \∆→

is a commitment relation (i.e., fits the pattern cAφ).

Specialization of Type-B Conflict:

Blocked Responsibility (i) Φ = {φ1, . . . , φn≥1} are in Type-B conflict, and (ii) the
alternative ΨΦ from Φ is such that every member of ΨΦ \∆→

is a responsibility relation (i.e., fits the pattern Riφ).
Blocked Ability (i) Φ = {φ1, . . . , φn≥1} are in Type-B conflict, and (ii) the

alternative ΨΦ from Φ is such that every member of ΨΦ \∆→

is an ability relation (i.e., fits the pattern Aiφ).
Blocked Occupancy (i) Φ = {φ1, . . . , φn≥1} are in Type-B conflict, and (ii) the

alternative ΨΦ from Φ is such that every member of ΨΦ \∆→

is an occupancy relation (i.e., fits the pattern O(Ri,Aj)).
Blocked Commitment (i) Φ = {φ1, . . . , φn≥1} are in Type-B conflict, and (ii) the

alternative ΨΦ from Φ is such that every member of ΨΦ \∆→

is a commitment relation (i.e., fits the pattern cAiφ).
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• All requirements with core modality x ∈ {g, k, t} which are not in a
responsibility, or ability, or commitment, or occupancy relation:

ANo(x, y,∆) = {φ ∈ ∆x |6 ∃yφ ∈ ∆}. (6.53)

• All instances of a responsibility, or ability, or commitment, or occupancy
relation, which are conclusions of n arguments:

AArgConcl(n, y,∆) = {φ ∈ ∆y | ∃X ⊆ Arg(∆), ∀(Π, ψ) ∈ X,
ψ ≡ φ and |X| = n}. (6.54)

• All instances of a responsibility, or ability, or commitment, or occupancy
relation, which are neither conclusions of arguments, nor consequents in
axioms:

ABasic(y,∆) = AArgConcl(0, y,∆) \ {φ | AxiomsCons(φ)}. (6.55)

• All instances of a responsibility, or ability, or commitment, or occupancy
relation, which have n operationalizations:

AOp(n, y,∆) = {φ ∈ ∆y | ∃X ⊆ Arg(∆), ∀(Π, ψ) ∈ X,
ψ ≡ φ and |X| = n}. (6.56)

• All instances of a responsibility, or ability, or commitment, or occupancy
relation, which participate in premises of at least n arguments:

AArgPrem(n, y,∆) = {φ ∈ ∆y | ∃X ⊆ Arg(∆), ∀(Π, ψ) ∈ X
φ ∈ Π and |X| = n}. (6.57)

A filter can be defined for every relation introduced for T2, in order to find
all instances of that relation. E.g., a filter can be defined to return all dependent
agents, i.e., every agent Aj such that there is k(

∧n≥1
i φi → Ajψ). Defining such

filters is straightforward, given the definitions of the relations (cf., §6.4).

6.6 Discussion

The responsibility, ability, occupancy, and commitment relations allowed both
for the introduction of agents and roles, and for a deeper specialization of the
inference and conflict relations. Common relations such as goal refinement, task
decomposition, and goal operationalization obtained new conditions (through
the operational argument concept), pertaining to role responsibilities, and agents’
abilities, commitments, and their assignment to roles.

In contrast to i-star, the main formalism in re which focuses on agents and
roles, T2 formalizes and generalizes its relations. T2 also extends the set of
relations found in i-star by adding the conflict relation and its specializations.
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7 T3

T3 adds the soft counterparts to the Goal and Domain assumption concepts, and
the preference relation to T2. The effects are as follows:

• In T1 and T2, no information could be made explicit for comparison
of solutions in terms of desirability. The preference relation is a binary
relation which indicates the relative desirability of satisfying either of two
expressions. E.g., if there is a preference relation saying that φ is strictly
preferred to ψ, then this reads that satisfying φ is strictly more desirable
than satisfying ψ.

• Every instance of the preference relation acts as a criterion for the compar-
ison of alternative solutions. If φ is strictly preferred to ψ, and solution A
satisfies φ, while solution B satisfies ψ, then the preference suggests that
A dominates B over this criterion alone.

• While the Softgoal concept has had various definitions in re, its instances
are usually vague statements about quality expected from the system-to-
be: e.g., “Privacy should be maintained”, “System should be reliable”,
“Queries should be answered quickly”, and so on. These statements are vague
because they include or refer to adjectives, such as “private”, “reliable”,
“quick”, which have no universal definition. If there was such a definition,
it would be clear when such adjectives apply, and thereby when a softgoal
is satisfied. Instead, a softgoal acts as a macro which generates preference
relations: e.g., let φ and ψ be two requirements, such that it is known that
satisfying φ makes the system-to-be more reliable than if ψ is satisfied.
The softgoal “System should be reliable” generates a preference relation
according to which φ is strictly preferred to ψ. By generating preference
relations, a softgoal acts as a question-answering mechanism: given a
softgoal, and two options which can be compared in terms of the measure
referred to in the softgoal, the softgoal says which of the options is more
desirable. Soft domain assumptions is used in an analogous way.

• Comparison of solutions allows the ranking of solutions. Ranking is es-
tablished using decision rules, which use preference relations. A decision
rule gives a weight to each preference relation, and thereby suggests which
preferences are more important than others. E.g., a decision rule may make
all preferences equally important, and thus suggest that the solution which
satisfies the highest number of preferred requirements ranks highest. It
should be clear that every Techne formalism has a decision rule, even when
preferences (and softgoals) are absent: e.g., T1 says that any instance of
the solution concept can be chosen, and this in itself is a decision rule,
even if simplistic. When preferences are added, more interesting decision
rules can be defined.
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7.1 Illustration

The Softgoal concept adds a modality to the core modalities from T2, and is
denoted sg. Suppose that there are the following two softgoals for las:

sg(w̃1: Make few errors when identifying ambulances);

sg(w̃2: Quickly establish if two or more incidents are reported for the same
location);

The two propositions use gradable adjectives “few” and “quick” which are
vague, hence the classification of these propositions as softgoals.

The number of errors made when identifying ambulances depends on how
Control assistants, denote this role R1, are informed about which ambulances
are allocated to which incidents. Let R2 denote the role of the dispatch interface.
There are roughly two ways to operationalize the goal g(p1 : Identify available
ambulances), which is the responsibility of R1, i.e., R1g(p1) ∈ ∆. One consists of
having the role R2 make available the list of allocated ambulances and update the
list every time an ambulance is allocated to an incident; this operationalization
involves two tasks:

t(u1: Show the list of all available and of all allocated ambulances);

t(u2: Update the list of all available and of all allocated ambulances every time
an ambulance is assigned to an incident).

Both are responsibility of R2, so that R2t(u1) and R2t(u2) are also in the
requirements database, along with k(t(u1) ∧ t(u2)→ g(p1)).

Another operationalization of g(p1) consists of having R1 manually keep the
list of available ambulances:

t(u3: Manually keep track of available ambulances).

For this option, the database includes also k(t(u3)→ g(p1)) and R1t(u3).
Experience from similar past systems, or other sources of expertise may

suggest that operationalization via t(u1) and t(u2) is less prone to errors when
ambulances are identified, than the operationalization via t(u3). Let the former
operationalization be labeled P1, and the latter P2. Given these two options, the
softgoal gives the preference relation P1 � P2, which reads “option P1 is strictly
more desirable than option P2”.

The time needed to establish if two or more incidents have been reported
for the same location depends on how Control assistants discharge the goal
g(p2: Check if multiple incidents are reported at same location). Consider two
operationalizations of g(p2):

1. g(p2) is first refined by the goal g(p3: Aid the identification of duplicate
calls for same incident) and the responsibility assignment R2g(p3), so that
k(g(p3) ∧ R2g(p3)→ g(p2)). Then, the goal g(p3) is operationalized onto
two tasks, t(u4: List of open incident locations incidents visible in the
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dispatch interface) and t(u5: Update the list of open incident locations
every time an open incident is added) via k(t(u4)∧t(u5)→ g(p3)). The two
tasks are responsibility of R2, so that also R2t(u4) ∈ ∆ and R2t(u5) ∈ ∆.

2. g(p2) is operationalized by t(u6: Every control assistant manually keeps
track of locations of open incidents), via k(t(u6)→ g(p2)), and the respon-
sibility assignment is R2t(u6).

If it judged that the first option above will result in lower times to identify
duplicate incident reports than the second option, then the softgoal generates
the preference relation for the former operationalization over the latter. If the
former is labeled P3 and the latter P4, then the preference relation is P3 � P4.

Consider now an instance of the Soft domain assumption concept, that is, a
vague domain assumption: sk(w3: Enough ambulances are operational). When
there are options as to how many ambulances must be made operational, then
this domain assumption generates preference relations over these options. The
options may be alternative operationalizations of a goal that involves choosing
the number of ambulances to be bought and serviced at each ambulance center.

7.2 Formalization

Semantic Domain. Two kinds of natural language propositions are distin-
guished in T3: vague and clear (i.e., non-vague) propositions. In T1 and T2,
all propositions were treated as clear, regardless of them actually being such
according to the criteria introduced below.

A natural language proposition is vague if all of the following conditions
verify for that proposition (e.g., [18] and related):

1. Truth conditional variability. Whether one would accept this proposition
as true depends on the context in which it is used. Quick system, storage
is sufficient, database has an intuitive structure are all obviously relative
to the context in which they are used.

2. Existence of borderline cases. Whatever the context of use, there will be
three sets of objects for which the truth of the proposition can be evaluated
to true, false, or either. In case of requirements, these objects can be
thought of as the system, its environment, or any part of, or combination
of (the parts of) these two. One set will be objects which clearly satisfy
the condition in the proposition, so the proposition is judged true for them.
Another will be such that the condition clearly fails for them. The third
set includes the so-called borderline objects, for which it is unclear if the
proposition is true or false; in other words, there is no definite criterion
which suggests either of the truth values. An object is a borderline case if
it is difficult or impossible to determine if it satisfies the condition stated
in the proposition. Taken out of context, a system with any response time
is a borderline case for quick system: if it is judged that a system with
response time x is quick, and one with 5x is clearly not quick, then is 2x
quick or not?
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3. The Sorites Paradox. When employed within a particular form of argument,
the proposition will give rise to the Sorites paradox (paradox of the heap).
The argument is usually laid out as follows (e.g., [16]):

1 grain does not make a heap.
If 1 grain does not make a heap then 2 grains do not.
If 2 grains do not make a heap then 3 grains do not.
...
If 9,999 grains do not make a heap then 10.000 do not.
10.000 grains do not make a heap.

The argument above appears valid, premises true, yet the conclusion false.
While the argument proceeds by addition, it can be reformulated to proceed
by subtraction: start by claiming that 10.000 grains of wheat do make a
heap, and subtract grains of wheat to arrive at the undesired conclusion
that 1 grain of wheat does make a heap. Same argument, be it by addition
or subtraction can be often constructed. If it is claimed that a quick
system is one which has a response time of x, one could construct the same
argument as above, by adding in each step, say, one milisecond to x.

A vague proposition subsumes a scale and an order over the values on the
scale. Quick implies a time scale, big some sort of size scale, simple a scale of
simplicity, and so on. Each of these suggests an order of desirability over the
values on the scale: e.g., quick suggests an order opposite of the order suggested
by slow.

Distinguishing vague and clear natural language propositions in T3 results
in the Softgoal concept as a vague counterpart to Goal and the Soft domain
assumption concept as the vague counterpart to Domain assumption.

The semantic domain in T3 includes vague and precise natural language
propositions, agents, and roles. There are now five kinds of natural language
expressions, members of extensions of the Goal, Domain assumption, Task, Softgoal
and Soft domain assumption concepts. A proposition is a softgoal if it states a
vague desired condition, a soft domain assumption if it states a vague believed
condition. There are no vague tasks, because a task requires intention, and it is
assumed that intentions are clear enough. T3 keeps all relations from T2 and
adds two kinds of preference relation, strict preference and indifference, between
arbitrary sets of expressions formed over propositions and relations.

Syntax. p, q, r, indexed or primed as needed, refer to clear natural language
propositions. When a natural language proposition is vague, it is denoted with
indexed or primed p̃, q̃, r̃. A and R are indexed, and denote, respectively, an
agent and a role. The symbol sg refers to the softgoal modality and sk to the
soft domain assumption modality.

The language in T3 is a finite set L3 of expressions, which is split onto
two parts. The modeling part, denoted LM3 , equals the language from T2,
i.e., LM3 ≡ L2, and is used to specify information that states the requirements
problem and its alternative solutions. The decision-making part, denoted LD3
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includes expressions which refer to preference relations, softgoals, and soft domain
assumptions, that is, information which is used for the comparison of alternative
solutions modeled using LD3 .

The language of T3 is the union L3 = LM3 ∪ LD3 of expressions where every
φ ∈ LM3 and every φ̃ ∈ LD3 satisfies the following bnf specification:

a ::= g(p) | k(p) | t(p) (7.58)

b ::= Ra | Aa | cAa (7.59)

c ::= a | b | O(R,A) (7.60)

d ::= (

n≥1∧
i=1

ci)→ c | (
n≥1∧
i=1

ci)→ ⊥ (7.61)

φ ::= c | k(d) (7.62)

e ::= {c1, . . . , cn≥1} (7.63)

f ::= e � e | e ≈ e (7.64)

g ::= {f1, . . . , fn≥0} (7.65)

φ̃ ::= g | sg(p̃)← g | sk(p̃)← g | g → ⊥ (7.66)

The first five rules above ensure that LM3 is identical to L2, so that all remarks
on the versatility and limitations of T2 syntax apply here as well. Novelty in
syntax starts with the rule that generates e, which is a set of requirements or
relations on agents and roles, i.e., a set of cs. The set then participates, via f ,
in a strict preference relation or an indifference relation, to compare in terms of
desirability these sets, and thereby allow the comparison of (parts of) solutions to
a requirements problem. A softgoal and soft domain assumption generate sets of
preference relations, which is reflected in g being a set of preference/indifference
relations, which are then related to the softgoal or soft domain assumption in φ̃.
It is allowed for a preference relation, or a set of preference relations not to be
generated by a softgoal or soft domain assumption. It is also allowed, when n = 0
in g, for a softgoal or soft domain assumption not to have generated preference
relations – instances of these concepts can thus be added to a requirements
database without having also and at the same time to add preference relations
that they generate.

Limitations of the grammar in T3 are as follows:

• Statements such as g(φ � ψ) are not expressions. T3 does not allow
preferences to be labeled with a core modality, or to have a role responsible
for a preference, or an agent able to satisfy a preference, or have an agent
commit to a preference.

• Agents cannot commit or be able to satisfy a softgoal or maintain a soft
domain assumption. This limitation is due to the vagueness of these
requirements. Because they are vague, it cannot be decided if a softgoal
has been satisfied, or a soft domain assumption maintained. Instead, by
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generating preferences over clear requirements, softgoals and soft domain
assumptions suggest how desirable are clear abilities or commitments of
agents.

• For a similar reason, softgoals and soft domain assumptions cannot be
responsibilities of roles. Rather, they state how desirable various clear
responsibilities are.

• Softgoals and soft domain assumptions cannot be in conflict. This is not
because there are no such conflicts, but because all such conflicts should be
tolerated. The preferences that they generate can be in conflict, and when
such conflict is present, it is understood as a tradeoff. E.g., if the softgoal
Respond quickly to emergency calls gives the preference t(p1) � t(p2), but
the softgoal Lower the cost of ambulance dispatching gives the opposite
preference t(p2) � t(p1), then there is a conflict {t(p1) � t(p2), t(p2) �
t(p1)} → ⊥.

The symbol ← relates a softgoal or soft domain assumption to the preference
set that it generates. The set is obtained by the application of the macro obtained
by the softgoal. Every softgoal and soft domain assumption macro is of the form,
for x ∈ {sg, sk}:

x(p̃)
def
= If satisfying φ is

• at least as desirable as satisfying ψ according to p̃, then add
φ � ψ to ∆; or is

• strictly more desirable than satisfying ψ according to p̃, then
add φ � ψ to ∆; or is

• as desirable as satisfying ψ according to p̃, then add φ ≈ ψ to
∆.

A softgoal and soft domain assumption macro is a function which takes two
(potentially singleton) sets of requirements and returns a preference relation
between them. The function is defined interactively: the macro is simply an
interface which asks the modeler to choose two requirements to compare according
to the softgoal or soft domain assumption, and the modeler chooses one of the
three options above.

T3 leaves softgoal macros outside its syntax, as there are no interactions
between the macros and the language L3.

Semantic Mapping. The semantic mapping function relates members in L3

to the objects identified in the semantic domain and the relations between these
objects. How this happens is clear from the informal discussions above.
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Consequence Relation. The consequence relation |v3 is defined in the same
way as |v2 and |v1 , even though the formal languages for each of these relations
are different.

Definition 7.1. For Π ⊆τ L3 and φ ∈ L3, the consequence relation |v3 is such
that:

• Π |v3 φ if φ ∈ Π, or

• Π |v3 x if ∀1 ≤ n, Π |v3 φi and k((
∧n
i=1 φi)→ x) ∈ Π,

and |v3 satisfies the axioms:

∀Πi,Πj , {Πi � Πj ,Πj � Πi} → ⊥, (7.67)

∀Πi,Πj , {Πi � Πj ,Πj � Πi} → ⊥. (7.68)

The two axioms indicate that contradictory preferences must produce inconsis-
tency. �

Remarks on soundness and completeness made for |v1 and |v2 apply for |v3 .

7.3 Problem & Solution Concepts

Adding preferences results in a significant departure of the problem and solution
concepts in T3 compared to those in T1 and T2. The major change is that now,
there is a large number of alternative requirements problem concepts. Differences
between them are due to each using a particular decision rule.

A decision rule uses preference relations to produce a ranking of alternative
solutions. Problem definitions in T1 and T2 subsumed a single decision rule:
choose any solution. Given preferences, solutions can be compared, and a
decision rule will state how to produce a ranking of solutions from preferences.
The requirements problem template is then as follows.

Definition 7.2. Given a set of goals, domain assumptions, and agents, find the
solution which ranks highest according to the chosen decision rule. �

The chosen decision rule is a macro, which results in T3 having any number
of macros, as many as one may care to specify. One such macro was given in
Example 3.5 earlier.

While decision rules can differ considerably, none should single out a Pareto
dominated solution. Suppose that there are two solutions, S1 and S2. S1 Pareto
dominates S2 if and only if it is possible to obtain S2 by removing requirements
from S1, while still keeping S2 a solution.

The select and operationalization functions remain the same as in T2, with
the obvious difference that |v2 gets replaced with |v3 and that the requirements
database now has two parts, reflecting the partition of L3.

The requirements database is split onto modeling and decision information,
that is, ∆ ⊆ L3 is such that ∆ = ∆M ∪∆D, ∆M ⊆ LM3 and ∆D ⊆ LD3 .

As preferences compare solutions, they are not part of solutions. Solutions
are identified in ∆M , which obeys the grammar of T2, so that the solution
concept is analogous to the solution concept in T2, in that it requires that the
same two conditions, Consistency and Achievement, be satisfied.
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7.4 Derived Relations

Since L2 ⊆ LM3 , all relations from T2 apply in T3, pending obvious changes to
their definitions (e.g., replacing |v2 with |v3).

This section develops relations which involve preferences and vague require-
ments.

7.4.1 Contribution Relations

The nfr framework [23] models nonfunctional requirements as goals which can
be satisfied to different levels, rather than treating them as two-valued. Every
nonfunctional goal serves as a criterion for the comparison of alternative designs
of the system-to-be. Each alternative will satisfy each nonfunctional goal to some
extent. All alternatives can then be compared over each criterion by contrasting
the satisfaction levels reached by every alternative on every nonfunctional goal.

The contribution relation in nfr relates a (part of) a design alternative to
a nonfunctional goal. The relation carries additional information in the form
of a contribution value, which qualifies how well the alternative satisfies the
nonfunctional goal. It is a triple Contribute(a, v, s), where s is a softgoal, a a set
of requirements, and v a contribution value.

To see how contribution relations can be captured using T3, observe firstly
that a nonfunctional goal is a softgoal. Since a nonfunctional goal can be more
or less satisfied, it is a vague requirement. Secondly, a contribution relation
from an alternative to a nonfunctional goal is useful only if there is another
alternative and another contribution relation from that other alternative to the
same nonfunctional goal. I.e., contribution value on a contribution relation needs
to be interpreted relative to contribution values on other contribution relations
targeting the same nonfunctional goal.

The definition of contribution relations using T3 is as follows.

Definition 7.3. Let sg(p̃) be a softgoal such that sg(p̃)← {Πi � Πj | 1 ≤ i, j ≤
n, n ≥ 2, i 6= j}, i.e., sg(p̃) generates n preference relations. Let there be two
possible contribution values, denoted + and ++. There is a ++ contribution
relation from Πi to sg(p̃) and a + contribution relation from Πj to sg(p̃) if and
only if Πi � Πj . �

The important property of this definition is that it changes as the number of
contribution values changes, and as the number of alternative sets Pii changes.
The simplest case is when there are two alternatives, Π1 and Π2, and there is
a strict preference relation between them, say Π1 � Π2. If this preference is
generated by some softgoal sg(p̃), then there are two contribution relations, one
from Π1 to sg(p̃), and another from Π2 to sg(p̃). The former must carry a higher
contribution value than the latter, to reflect the preference relation. When the
number of alternatives is higher, two cases ought to be distinguished:

• The strict preference relations give a total preference order over the alter-
natives. In this case, there must be at least as many contribution values
as there are alternatives, since the total order is transitive.
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• The preference relations over the alternatives do not give a complete order.
In this case, the contribution relations cannot be defined from preference
relations.

The two cases above suggest that a single contribution relation type is not
expressive enough. Different softgoals will generate different combinations of
preferences over alternatives, so that defining a single contribution relation
type with any number n of contribution values is not recommended. Rather, if
contribution relations are necessary, define preferences and produce a contribution
relation type for each softgoal.

In the example used for illustration earlier (§7.1), the softgoal sg(w̃1) generates
the preference relation Π1 � Π2, where:

• Π1 is a set which includes t(u1) and t(u2), along with the assumption
k(t(u1) ∧ t(u2) → g(p)1) and the responsibility assignments R2t(u1) and
R2t(u2); in words, the set Π1 describes the option which suggest to iden-
tify available ambulances using the dispatch software interface, which is
responsible for executing both t(u1), the task of showing the list of all
available and allocated ambulances, and t(u2), the task of updating that
list whenever an ambulance is assigned to an incident;

• Π2 is a set which includes the description of the option to identify available
ambulances by having every control assistant, denoted Π1, execute t(u3),
the task of manually keeping track of available ambulances; this set includes
t(u3), the assumption k(t(u3)→ g(p1)), and the responsibility assignment
R1t(u3).

The contribution relations which correspond to the setup above need to have at
least two contribution values. Let these be + and ++, where the former indicates
weaker contribution than the latter. The contribution relations corresponding to
the above are then Contribute(Π1,++, sg(w̃1)) and Contribute(Π2,+, sg(w̃1)).

Suppose now that there is a third option which refines g(p1), given by the
set Π3, and consists of having the dispatch interface list available and assigned
ambulances, and having control assistants who update that list via the interface.
There are now two possibilities with regards to generating contribution relations
from this new setup:

• If (i) the relation � is transitive, and (ii) Π1 � Π3 and Π3 � Π1, then
also Π1 � Π2, and a three-valued contribution relation is needed. Let +,
++, and +++ be the three contribution values, in increasing strength of
positive contribution. The three contribution relations that capture this
case are Contribute(Π1,+++, sg(w̃1)) and Contribute(Π2,+, sg(w̃1)) and
Contribute(Π3,++, sg(w̃1)).

• If the softgoal does not generate a total preference order over the three
sets (e.g., there is no preference between Π1 and Π3), then a three-valued
contribution relation is not appropriate, since the three sets cannot be
compared using the strict preference relation.
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The example above illustrates that contribution relations can be viewed as
relations derived from preferences generated by softgoals, and that they exist only
if the softgoal generates a complete preference order over the sets of requirements
to which it applies.

7.4.2 Qualitative Relaxation Relation

A requirement is relaxed if it cannot be satisfied, because it is not feasible to do
so. The process of relaxing a requirement consists of changing the requirements
database so that the idealistic requirement no longer needs to be satisfied. The
result is that other one or more requirements, this time feasible, need to be
satisfied, instead of the idealistic requirement.

There are basically two ways to relax a requirement. One is to remove it
from the requirements database, and add some requirements which appear to
be feasible, and ought to be satisfied instead. The drawback of this approach is
that the original requirement is lost from the requirements database. To trace
back the reason for having the added requirements in the database, one has
to look at a previous version of the requirements database, rather than in the
current version of the requirements database. The second option is to relate the
idealistic requirement to requirements which relax it, and thereby keep them all
in the current version of the requirements database.

The relaxation relation between an idealistic requirement and the require-
ments which relax it is defined over inference and preference relations. Since
the latter will be less desired than the former, the relaxation relation can also
be called an approximation relation, in that satisfying the feasible requirements
approximates, i.e., is good enough but not equal to, satisfying the idealistic
requirement.

It is not precise enough to call this only a relaxation relation, since there is
another way to relax requirements, which is discussed later for a more expressive
Techne formalism. The appropriate name here is qualitative relaxation relation,
because it can target only binary requirements, not those which place constraints
on values of numerical variables.

Definition 7.4. There is a qualitative relaxation relation from the set
{Π1, . . . ,Πn} to the requirement φ 6∈ ∆→ if and only if:

1. ∀1 ≤ i ≤ n, ∃(Πi, φ) ∈ Arg(∆), i.e., every Πi is a premise in an argument
for φ,

2. There is a total order using�, or a total preorder using� over {Π1, . . . ,Πn},
i.e., all premises of arguments for φ are ranked by the preference relations.

�

Recall that � gives a total preorder on {Π1, . . . ,Πn} iff � is transitive and
total (i.e., compares every two members of that set). � gives a total order on
{Π1, . . . ,Πn} iff it is irreflexive, transitive, and total.

The qualitative relaxation relation can be specialized in the obvious way, by
adding constraints on the core modalities of the idealistic requirement, and/or
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on the core modalities over the requirements in the argument premises. A “goal
relaxation relation” could then be analogous to the goal refinement relation,
in that the idealistic requirement must be a goal, and the requirements which
approximate it must also be goals.

The goal g(p2: Fully automate ambulance availability identification) is ide-
alistic since it is not feasible to automatically collect all information about
ambulances (e.g., where they are, where they are going, what incident they are
assigned to, and so on) which is needed to automate availability identification. To
relax this goal, one starts by introducing at least two arguments, e.g., (Π1, g(p2))
and (Π2, g(p2)), where each premise describes one way to partly automate ambu-
lance availability identification. The second step is to add preferences between
the premises until there is a total order or a total preorder.

7.4.3 Qualitative Tradeoff Relation

Definition 7.5. There is a qualitative tradeoff relation between subsets Π1

and Π2 of ∆ if and only if

1. Π1 ∪Π2 ∪∆→ |v3 ⊥, i.e., the two sets are inconsistent, and

2. at least one of the following cases holds, for i, j ∈ {1, 2} and i 6= j:

• Πi � Πj and Πj � Πi, or

• Πi � Πj and Πj � Πi.

In words, if there are contradictory preferences between the two sets, then there
is an inconsistency. �

The relation above involves a tradeoff because it is impossible to choose
simultaneously both of the preferred sets of requirements. It is a qualitative
tradeoff relation because it is a tradeoff over binary variables, as each requirement
is either satisfied or not.

7.4.4 Labeled Preference Relations

Preference relations generated by softgoals and soft domain assumptions can be
explicitly associated to the relevant softgoal or soft domain assumption. If a
softgoal sg(w̃) generates the preference Π � Ψ, labeling that preference relation
gives �sg(w̃) and Π �sg(w̃) Ψ, and allows the distinction between preferences
generated by different softgoals and soft domain assumptions.

Adding a label specializes the unlabeled preference relation. It allows, e.g.,
the definition of database interface filters which apply only to a particular
preference relation, which can be useful when there is a need to compute, e.g.,
the transitive closure over a preference relation, or establish if the preferences
generated by a single softgoal give a total order.
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7.5 Database Interface

All filters defined for T2 apply in T3. Additional filters are defined below and
apply to the preference relation and vague requirements; when � is used without
a label (cf., §7.4.4), it refers to all labeled and unlabeled preferences in the
requirements database:

• All vague requirements which generate exactly n preference relations, for
x ∈ {sg, sk}:

APNo(x, n,∆) = { φ ∈ ∆x |6 ∃φ← X ∈ ∆ s.t.|X| = n and

X = {ΠiRΠj | 1 ≤ i, j ≤ m, R ∈ {�,�,≈}}}. (7.69)

• All qualitative tradeoffs:

AQTradeoff(∆) = {Φ | Φ = {Πi,Πj}, Πi 6= Πj , Πi,Πj ∈ ℘(∆),

and {Πi � Πj ,Πj � Πi} ⊂ ∆

or {Πi � Πj ,Πj � Πi} ⊂ ∆}. (7.70)

• All preferred requirements:

APreferred(∆) = {φ | φ 6∈ ∆→ and ∃Π ∈ ℘(∆) s.t.

φ ∈ Π and ∃ΠRΨ ∈ ∆, R ∈ {�,�}}. (7.71)

• All dominated requirements:

ADominated(∆) = {φ | φ 6∈ ∆→ and ∃Π ∈ ℘(∆) s.t.

φ ∈ Π and ∃ΨRΠ ∈ ∆, R ∈ {�,�}}. (7.72)

• All dominating requirements:

ADominating(∆) = APreferred(∆) \ ADominated(∆). (7.73)

• All criteria:

ACriteria(∆) = TClosure(�) ∪ TClosure(�), (7.74)

where TClosure(�) is constructed as follows:

1. For �⊆ ℘(∆)× ℘(∆), let �0 def
= �;

2. For i > 0,

�i def
= �i−1 ∪ {(Πi,Πk) | ∃Πj s.t. (Πi,Πk) ∈�i−1

and (Πj ,Πk) ∈�i−1}, (7.75)

3. Finally, TClosure(�)
def
=

⋃
i∈N �i.
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and TClosure(�) is constructed in the analogous way, by replacing every
occurence of � with �. Every criterion is a pair of requirements sets
connected by a preference relation, whereby the pair is taken from the
transitive closure of � and �.

Every filter above can be specialized for a particular softgoal or soft domain
assumption. E.g., it may be interesting to find all qualitative tradeoffs which
involve the softgoal sg(w̃: Software is highly secure), which requires the following
filter:

AQTradeoff(x,∆) = {Φ | Φ = {Πi,Πj}, Πi 6= Πj , Πi,Πj ∈ ℘(∆),

and {Πi �x Πj ,Πj �x Πi} ⊂ ∆

or {Πi �x Πj ,Πj �x Πi} ⊂ ∆}. (7.76)

where x ∈ ∆sg ∪∆sk is a softgoal or a soft domain assumption.

7.6 Discussion

Despite being built by extending T2, T3 results in the requirements problem and
solution concepts which strongly depart from those in both T1 and T2. While
every solution still has to satisfy the Consistency and Achievement conditions, it
now also has to dominate – according to some decision rule – other solutions.
Decision rules in turn are defined over preferences, while vague requirements
act as sources of preferences. Adding these notions means that it is possible to
explicitly give information necessary for decision-making which is considerably
more sophisticated than the decision rule implicit in T1 and T2, namely, choose
any solution which satisfies the Consistency and Achievement conditions.

Allowing preferences as in T4, while having the basic core modalities, agents,
and roles, shows that T4 can express requirements and decision information
which could not be captured in prior work, and formalizes a number of informally
used notions:

• Preferences can be given also over alternative responsibility assignments,
over alternative assignments of agents to roles, and over alternative com-
mitments;

• The relationship of a softgoal to preference relations is that the former is
a source of the latter;

• A softgoal is one specialization of a vague requirement, meaning that
there can be other kinds of vague requirements, such as the soft domain
assumption;

• As soon as a formalism has the preference relation, the contribution relation
cannot be considered primitive, but a derived relation;

• Preferences can be in conflict, and such conflicts indicate tradeoffs;
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• Responsibility, ability, commitment, and occupancy can be conditional on
the satisfaction of requirements, and the other way around.

8 T4

T4 is built over T3 by adding optionality modalities. They are three unary
relations on requirements, used as follows:

• If a requirement must be satisfied in every solution of the requirements
problem, then it is a mandatory – or equivalently, a necessary – requirement,
and the Mandatory modality is used to state this.

• If it is desirable, but not necessary to satisfy a requirement, then the
requirement carries the Preferred modality.

• If a requirement is in the premises of an argument and it is not a Manda-
tory requirement, then it carries the Inherited modality. Inheritance of
optionality modalities is discussed further below.

The effects of adding the optionality modalities are as follows:

• It is not possible in T3 to distinguish requirements which must be satisfied
from requirements which are desired, but not necessary. E.g., it is necessary
that reported incidents are handled, while it may be desirable, but not
necessary that the exact location of every ambulance is always known to the
dispatch center. This distinction is crucial for the definition of the solution
concept. In T3, a solution was any set which satisfied the Consistency
and Achievement conditions, the latter requiring that all top-level goals be
satisfied: every top-level goal was thereby, by default, a mandatory goal.
T4 has the optionality modalities, and they result in a new Achievement
condition for the solution concept.

• Because T4 distinguishes necessary from non-necessary requirements, it has
three solution concepts: threshold solution, candidate solution, and solution.
A set of requirements must satisfy all mandatory requirement to be a
threshold solution. A threshold solution is also minimal, in that it includes
only the information necessary to satisfy all mandatory requirements. A
candidate solution is made by adding new information to a threshold
solution. A candidate solution which is chosen as the result of decision-
making is called the solution.

• The preferred modality carries two pieces of information. Firstly, it says
that it is not necessary to satisfy the preferred requirement: it may be
satisfied by some solutions, but need not, and it does not need to be satisfied
in every solution. Secondly, the preferred modality carries information
about relative desirability, and thereby about preference. A requirement
with a preferred modality can be understood as being involved in a special
case of preference relation. Since there is no negation in Techne, φ � ¬φ is
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not an expression. Having the preferred modality on φ indicates that if
two solutions differ only in that one satisfies φ, the other does not, then
the former is preferred to the latter. It follows that a requirement with
the preferred modality is a criterion, to be used alongside preferences in
decision-making.

• Distinction between mandatory and preferred domain assumptions can
be read as the distinction between definite and defeasible beliefs about
the domain. A defeasible domain assumption is a domain assumption
which carries the Preferred modality. Rather, the Preferred modality, when
applied to a domain assumption can be informally read in the absence
of any information to the contrary, i.e., k(φ → ψ)P reads “If φ, then, in
the absence of any information to the contrary, ψ” as in Reiter’s logic
for default reasoning [25]. Another way to read it is reasons to believe in
the antecedent provide reasons to believe in the consequent, as if it was
a default rule in Simari & Loui’s argumentation framework [28], namely,
k(φ→ ψ)P reads “reasons to believe in φ provide reasons to believe in ψ”.
It follows that a domain assumption which includes both an implication
connective and carries the Preferred modality cannot be an axiom.

8.1 Illustration

Consider again the example in Figure 1. The goal g(q1), that ambulances arrive
at their incident locations should be satisfied in every solution, which makes it a
mandatory goal, denoted g(q1)M.

The goals g(p1) to g(p5) refine g(q1) in that figure. Every one of these goals
inherits the mandatory modality from g(q1), because all of them must be satisfied
in order for g(q1) to be satisfied. Their optionality modalities are, however, not
mandatory, but inherited. The reason is that setting them all to mandatory
would make any other refinement of g(q1) irrelevant. To see why, suppose that
there is another refinement of g(q1), via goals g(p6) to g(p10), i.e., there is a

domain assumption k(
∧10
i=6 g(pi)→ g(q1)). If it is only known that g(q1)M, i.e.,

that g(q1) is mandatory, then any of the following can be done:

• If no optionality modality is assigned to the goals in the two refinements,
making any one goal mandatory in one of the two refinements results
in the decision to reject the other refinement. E.g., if g(p9) is made
mandatory, then every solution must satisfy g(p9), and the refinement

k(
∧5
i=1 g(pi)→ g(q1)) becomes irrelevant.

• If any of the goals in either refinement is made optional or preferred, then
this is an error in the use of T4. Because all goals in a refinement must
be satisfied in order for the refined goal to be satisfied, if the latter is
mandatory, then the former cannot be unnecessary.

• The role of the inherited optionality modality is to allow a requirement,
say φ, to have an undecided status, yet a status which – when decided – is
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settled based on the optionality modality of all requirements ψ1, . . . , ψn
such that φ ∈ Πi and (Πi, ψi) ∈ Arg(∆). In words, if φ is among the
premises of an argument for a requirement ψi, then the optionality modality
of φ depends on the optionality modality of ψi, unless φ is already has
the Mandatory modality. Returning to g(q1)M, the optionality modalities
of requirements in all arguments which conclude g(q1)M should have the
inherited optionality modality, including thereby all requirements in both
refinements of that goal.

The Inherited modality can be seen as postponing the decision about the
optionality modality of a requirement. If viewed so, the moment at which the
decision is made is the moment at which a solution is chosen for the requirements
problem. In the example above, if the chosen solution includes the refinement
k(
∧10
i=6 g(pi)→ g(q1)), then every goal g(p6), . . . , g(p10) which has the modality

Inherited can be read as having the modality Mandatory: being part of the chosen
solution, and since they refine a mandatory requirement, these requirements
can be viewed as mandatory too. The Inherited modality thus serves to avoid
premature decision-making about how a requirement should be operationalized.

8.2 Formalization

Semantic Domain. The semantic domain of T4 includes vague and clear
natural language propositions, agents, and roles. T4 carries over all relations
from T3, and adds three unary relations for the three optionality modalities:
Mandatory, Preferred, and Inherited. The optionality modalities are informally
defined as follows:

• A clear natural language proposition has the Mandatory modality if and only
if every solution to the requirements problem must satisfy the conditions
stated by that proposition.

• A clear natural language proposition has the Preferred modality if and
only if it is not necessary that every or any solution to the requirements
problem satisfies it, but it is desirable that it is satisfied by the chosen
solution.

• A clear natural language proposition has the Inherited modality if and only
if it serves as a premise in at least one inference relation and it does not
have the Mandatory modality.

Syntax. T4 maintains the distinction between modeling and decision-making
parts of the language. Expressions in the modeling part obtain symbols for
optionality modalities.

The language of T4 is the union L4 = LM4 ∪ LD4 of expressions where every
φ ∈ LM4 and every φ̃ ∈ LD4 satisfies the following bnf specification:
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a ::= g(p) | k(p) | t(p) (8.77)

b ::= Ra | Aa | cAa (8.78)

c ::= a | b | O(R,A) (8.79)

d ::= cM | cP | cH (8.80)

e ::= (

n≥1∧
i=1

ci)→ c | (
n≥1∧
i=1

ci)→ ⊥ (8.81)

f ::= k(e)M | k(e)P | k(e)H (8.82)

φ ::= d | f (8.83)

g ::= {d1, . . . , dn≥1} (8.84)

h ::= g � g | g ≈ g (8.85)

q ::= {h1, . . . , hn≥0} (8.86)

φ̃ ::= q | sg(p̃)← q | sk(p̃)← q | q → ⊥ (8.87)

The first seven rules revisit the grammar of LM3 , adding symbols for optionality
modalities. Goals, domain assumptions, and tasks, as well as the responsibility,
ability, occupancy, and commitment can carry an optionality modality. The
syntax reflects the idea that every requirement in a model should carry one of
the three optionality modalities.

The language L4 has a partition analogous to L3, that is, L4 = LM4 ∪ LD4 ,
with LM4 ∩ LD4 = ∅.

Optionality modalities remain in the modeling part only. Preference relations
and vague requirements cannot carry optionality modalities. There is no reason
other than simplicity to keep optionality modalities outside LD4 .

Semantic Mapping. Informal discussions up to this point suggest how sym-
bols and expressions map to members of the semantic domain.

Consequence Relation. Optionality modalities have no influence on the
consequence relation, so that the consequence relation is defined as in T3.

Definition 8.1. For Π ⊆τ L4 and φ ∈ L4, the consequence relation |v4 is such
that:

• Π |v4 φ if φ ∈ Π, or

• Π |v4 x if ∀1 ≤ n, Π |v4 φi and k((
∧n
i=1 φi)→ x) ∈ Π,

• |v5 satisfies the preference conflict axioms:

∀Πi,Πj ⊆ Π, {Πi � Πj ,Πj � Πi} → ⊥, (8.88)

∀Πi,Πj ⊆ Π, {Πi � Πj ,Πj � Πi} → ⊥. (8.89)
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The preference conflict axioms indicate that contradictory preferences must
produce inconsistency. �

Remarks on soundness and completeness made for |v1 and |v2 apply for |v4 .

8.3 Problem & Solution Concepts

Optionality modalities add information which is useful in two respects in the
definition of the problem and solution concepts:

• The Mandatory modality results in the distinction between three solution
concepts, namely threshold solution as that which satisfies all Mandatory
requirements only, candidate solution, as a threshold solution expanded to
satisfy Preferred requirements, and the solution concept as the candidate
solution which was chosen among various candidate solutions.

• The Preferred modality adds new information usefeul in the definition of
decision rules. Recall that a decision rule in T3 served to rank solutions on
the basis of preference relations. In T4, decision rules can be defined to use
both preference relations and the Preferred unary relations on requirements
in order to rank solutions.

The requirements problem in T4 is stated in the same way as in T3.

Definition 8.2. Given a set of goals, domain assumptions, and agents, find the
solution which ranks highest according to the chosen decision rule. �

The decision rule is again a macro which returns a ranking of the solutions,
given a set of solutions, preference relations and optionality unary relations over
requirements. E.g., a macro can be defined to rank solutions from the solution
which satisfies most preferred requirements in preference relations and most
requirements with Preferred modality.

The axioms set definition needs to be revised so that the set of axioms
includes only requirements which have both the implication connective and the
Mandatory modality.

Definition 8.3. The set of axioms in a requirements database ∆ ⊆ L4 is the
set:

∆→
def
= {φ | φ has the implication connective and }

φ has the Mandatory optionality modality}. (8.90)

�

The Select function also needs to be revised, so that subsets of a requirements
database can be extracted which carry a particular optionality modality.

Definition 8.4. The select function in T4 is defined as follows:

Select(x, y,Π)
def
= {φ | φ has the core modality x

and has the optionality modality y, or φ ∈ Π→}. (8.91)
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The part “or φ ∈ Π→” ensures that the output of the select function always
includes all axioms. A modality can be a core modality or an agency modality.
�

To simplify notation, the following abbreviations are used:

Select(x, y,Π) ≡ Π
y
x, (8.92)

Πx ≡
⋃

y∈{M,P,H}

Π
y
x, (8.93)

Πy ≡
⋃

x∈{g,k,t}

Π
y
x. (8.94)

In words, Πx is the subset of Π which have the core modality x and have any
optionality modality. Πy is the subset of Π which has the optionality modality y

and has any core modality.

Definition 8.5. A threshold solution to the requirements problem given by a
requirements database ∆ ⊆ L4 is a set S ⊆τ ∆k ∪∆t of domain assumptions
and tasks, which satisfies the following four properties:

1. Consistency: S 6|v4 ⊥, i.e., all requirements in a threshold solution must be
consistent;

2. Threshold achievement: ∀φ ∈ ∆M
g, ∃Π ∈ Op(φ) s.t. Π ⊆ S, i.e., a threshold

solution must include at least one operationalization of every Mandatory
goal;

3. Conformity: ∀φ ∈ ∆M

k ∪∆M

t , S |v4 φ, i.e., a threshold solution must satisfy
all Mandatory domain assumptions and all Mandatory tasks;

4. Minimality: 6 ∃S′ ⊂ S s.t. S′ satisfies the Consistency, Threshold achieve-
ment, and Conformity conditions, i.e., a threshold solution must include
only the requirements necessary to satisfy the three conditions above.

�

The Threshold achievement condition requires that all Mandatory goals be
satisfied, while the Conformity condition requires asks that all other Mandatory
requirements are satisfied too. These two conditions correspond to the Achieve-
ment condition in T3 and simpler Techne formalisms. The Minimality condition
is necessary in T4 in order to distinguish threshold solutions from the candidate
solution concept.

Definition 8.6. A candidate solution to the requirements problem given by a
requirements database ∆ ⊆ L4 is a set S ⊆τ ∆k ∪∆t of domain assumptions
and tasks, which satisfies the following four properties:

1. Threshold inclusion: ∃S′ ⊆τ S, where S′ is a threshold solution to the
requirements problem in ∆, i.e., S is equivalent or superset of a threshold
solution;
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2. Expansion: there is a potentially empty Π ⊆ ∆k∪∆t such that S = S′∪Π,
i.e., there is a potentially empty set of domain assumptions and tasks
which are not Mandatory and which are included in S.

A candidate solution is either equal to a threshold solution (when Π is empty)
or is a threshold solution which was expanded by adding non-Mandatory tasks
and domain assumptions to it. �

Observe the following:

• The aim of decision-making is to rank candidate solutions and thereby
recommend the highest-ranking one as the solution to the requirements
problem. If a threshold solution cannot receive any more tasks or domain
assumptions and remain consistent, then Π = ∅ in Definition 8.6, and the
threshold solution can be, as-is, called a candidate solution. Definiton
8.6 allows Π = ∅ in order to allow a threshold solution to appear among
candidates, and thereby allow one to choose a candidate solution which
fails to have any but the minimal set of tasks and domain assumptions
which satisfy the Consistency, Threshold achievement, Conformity, and
Minimality condition.

• There can be many candidate solutions where Π 6= ∅. Definition 8.6
effectively allows as a candidate solution any expansion of a threshold
solution, as long as the expanded candidate solution is consistent. That
definition thereby does not require every candidate solution to be maximally
consistent. If one wishes to rank only maximally consistent candidates,
then this should be done via a decision rule, as it is straightforward to
define a decision rule which will only allow maximally consistent candidates.
Asking that every candidate is maximally consistent would be to have too
many constraints in the candidate solution definition, and thereby miss
potentially relevant solutions which are not maximally consistent.

Preferences and Preferred requirements remain outside the solution concepts.
As in T3, they are used for the definition of decision rules.

8.4 Derived Relations

T4 keeps all relations defined in T1–T3 and changes the definitions of the
inference and conflict relations.

8.4.1 Strict & Defeasible Inference

Definition 5.6 of the inference relation required that the domain assumption
which relates the premises and the conclusion be an axiom. T4 cannot keep
the inference relation as-is, since it allows domain assumptions to be axioms,
when they are Mandatory, or defeasible, when they are Preferred. There are two
inference relations now, as follows.

Definition 8.7. A requirement φ ∈ ∆ stands in the inference relation with the
requirements {ψ1, . . . , ψn} ⊆ ∆, n ≥ 1, if and only if:
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1. k((
∧n
i=1 ψi)→ φ)M ∈ ∆→;

2. 6 ∃Π ⊆τ ∆ s.t. Π ⊂τ ({ψ1, . . . , ψn} ∪∆→) and Π |v1 φ;

3. 6 ∃γ ∈ ∆→ s.t. {γ} ∪ {
∧n
i=1 ψi} |v1 ⊥.

�

The only difference between inference in T1–T3 and the strict inference
relation above is that the domain assumption connecting premises and the
conclusion is Mandatory. In the defeasible inference, that domain assumption is
instead Preferred, and thereby not an axiom.

Definition 8.8. A requirement φ ∈ ∆ stands in the inference relation with the
requirements {ψ1, . . . , ψn} ⊆ ∆, n ≥ 1, if and only if:

1. k((
∧n
i=1 ψi)→ φ)P ∈ ∆;

2. 6 ∃Π ⊆τ ∆ s.t. Π ⊂τ ({ψ1, . . . , ψn} ∪∆→) and Π |v1 φ.

3. 6 ∃γ ∈ ∆→ s.t. {γ} ∪ {
∧n
i=1 ψi} |v1 ⊥.

�

Because k((
∧n
i=1 ψi) → φ)P is Preferred, it is only required in the third

condition that no axiom contradicts it.
A convenient way to view the distinction above in light of T1–T3, is that

the inference relation from those formalisms was not specialized, but that the
defeasible inference relation was added alongside the strict inference relation.
This fits the fact that both the strict and defeasible inference relation can each be
specialized in the analogous way to the inference relation, e.g., onto, respectively,
strict and defeasible goal refinement, strict and defeasible task decomposition,
and so on.

8.4.2 Strict & Defeasible Conflict

The conflict relation that was relevant in T1–T3 becomes the strict conflict
relation in T4. The defeasible conflict relation differs from strict conflict only
by having a defeasible domain assumption which connects the premises to the
conclusion.

Definition 8.9. Requirements {φ1, . . . , φn} ⊆ ∆ stand in the strict conflict, for
n ≥ 2, if and only if:

1. ∃k((
∧n
i=1 φi)→ ⊥)M ∈ ∆→;

2. 6 ∃Π ⊆ ∆ s.t. Π ⊂ ({φ1, . . . , φn} ∪∆→) and Π |v1 φ.

�

Definition 8.10. Requirements {φ1, . . . , φn} ⊆ ∆ stand in the defeasible con-
flict, for n ≥ 2, if and only if:

1. ∃k((
∧n
i=1 φi)→ ⊥)P ∈ ∆→;
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2. 6 ∃Π ⊆ ∆ s.t. Π ⊂ ({φ1, . . . , φn} ∪∆→) and Π |v1 φ.

�

The change from the conflict relation to the strict and defeasible conflict
relations is analogous to the change from the inference relation to the strict and
defeasible relations.

Each of the strict and defeasible conflict relations in T4 can be specialized in
the exact same way as the conflict relation in T1–T3. E.g., defeasible conflict is
specialized onto defeasible Type-A, defeasible Type-B , and defeasible Type-C
conflicts. The definitions are not reproduced here as they are obvious from
earlier discussions (cf., §5.4.2).

8.5 Database Interface

All filters defined for T1–T3 apply in T4. There are no filters specific to T4.

9 T5

T5 is built over T4 by making three major additions:

• The Quality constraint core modality is added. It cannot be associated to
natural language propositions, but only to mathematical expressions over
numerical variables. Its purpose is to identify desirable values of numerical
variables. E.g., if the variable t equals the average time for an ambulance
to reach an incident after the ambulance is mobilized to that incident, then
q(t ≤ 12min) is a quality constraint which indicates that it is desirable for
t to take a value up to 12 minutes.

• Assumptions can be made about, among others, arithmetic relations be-
tween numerical variables. In T1–T4, there were simple domain assump-
tions, namely, propositions associated to the modality k, and complex
domain assumptions, which include the implication connective. Now, e.g.,
an expression v1 + v2 ≤ v3, where the three variables are rational, can be
a domain assumption, namely, k(v1 + v2 ≤ v3)P is an allowed expression in
the language of T5.

• Mathematical relations over rational variables can carry the Task modality.
This is allowed in order to capture tasks which consist of assigning a value
to a particular variable.

• The new expressions above correspond, in the semantic domain, to relations
between numerical variables. One such relation is quantitative refinement.
E.g., the domain assumption k(x2

1 + x2 = x3) gives the value of x3 as
a function of values of x1 and x2, and this is interpreted in T4 as x3

being refined by x1 and x2 according to the function given in the domain
assumption.
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• Relaxation of idealistic requirements was, in T3, only possible via qual-
itative relaxation. Allowing rational variables and quality constraints
results now in the possibility to quantify, if needed, the level of satisfaction
of a softgoal or of a soft domain assumption, through either probability
functions or fuzzy membership functions. A softgoal for instance can be
treated as having a level of satisfaction described by a continuous function
of a numerical variable: e.g., f(t) may be defined to return the satisfaction
level for a given time t for an ambulance to reach its designated incident
location. If one prefers to relax the softgoal via a probability function, it
is then not the level of satisfaction achieved by the value of a variable that
is of interest, but the frequency at which that variable obtains some value
in a given range.

9.1 Illustration

In las, and in relation to the response to emergency calls and the mobilization
of ambulances, the time that these activities take is a crucial part of quality of
service. One can use the following variables, where c is a unique identifier of a
call and e of a unique incident:

t1,c: Time the caller waits for a control assistant;
t2,c: Time to identify incident location;
t3,c: Time to fill out incident report;
t4,e: Time to mobilize an ambulance;
t5,e: Time for the mobilized ambulance to arrive
and confirm arrival at incident location.

A government standard may not be so specific as to define bounds on every
one of these variables. Instead, it may impose a maximal time over a subset of
activities that need to be executed between the reception of an emergency call
and the confirmation of the arrival of an ambulance to the incident location; for
example:

q(t6,c ≤ 3min: t6,c is the duration between the switching of the call c to the
dispatch center to the mobilization of the ambulance to the incident location;)

where it is clear that the value of t6,c depends on t1,c, t2,c, t3,c and t4,e. If it is
assumed that t6,c = t1,c + t2,c + t3,c + t4,e, then add this to the requirements
database as a domain assumption over quantitative variables, k(t6,c = t1,c +
t2,c + t3,c + t4,e). The domain assumption says that there is a quantitative
refinement relation between variables, and it specifies the functional relation
between the refined t6,c and the variables refining it. In contrast to the refinement
relation, quantitative refinement is not over requirements, but variables in
requirements.

While it may be useful to set a precise bound on the value of an aggregate
variable, as t6,c above, it may be more interesting to set bounds relative to the
values of other variables. E.g., if one wants t2,c to be at most 110% of its average
value over the past three months, then this can be written
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q(t2,c ≤ (1.1/3)(v1,m−3 + v1,m−2 + v1,m−1));

k(v1,m = n(m)−1∑n(m)
i=1

∑c(i)
c=1 t2,c), where m is the month identifier, n(m) the

number of days in m, c is the call identifier on a given day, c(i) is the total
number of calls received on day i of month m;

where the domain assumption is a quantitative refinement of v1,m, the average
time, over a month, that it takes to identify the location.

The quality constraints and quantitative refinements need to be related to
goals, tasks and domain assumptions in order to determine if the former are
satisfied. If there is a running system, the values of t2,c are recorded, and it
is straightforward to check if the constraint t2,c ≤ (1.1/3)(v1,m−3 + v1,m−2 +
v1,m−1) is satisfied. Before the system is in operation, values of t2,c can be
simulated by assuming that t2,c is a random variable which has some probability
distribution. E.g., k(t2,c v N(60sec, 45sec2)) if it is assumed that t2,c follows
a normal distribution with mean 60sec and variance 45sec2 when the task
t(u1) is satisfied, which can be modeled by a refinement k(t(u1) → k(t2,c v
N(60sec, 45sec2))). This assumption may be based on data from a pilot study,
from expert opinion, or from data on systems which also satisfy t(u1) and are
already in operation.

An important consequence of allowing numerical variables is that it becomes
possible to perform quantitative relaxation. The upper bound on t2,c in q(t2,c ≤
(1.1/3)(v1,m−3 + v1,m−2 + v1,m−1)) may still be too idealistic, as callers may
provide information of very different quality about the incident location. The
requirement can be relaxed in two alternative ways, by probabilistic or fuzzy
relaxation.

Probabilistic relaxation of a quality constraint is done in two steps. Firstly,
the variable constrained in q is redefined as a random variable, and an assump-
tion is made on the probability distribution of that random variable. Above,
k(t2,c v N(60sec, 45sec2)) makes of t2,c a random variable which follows a normal
distribution. Secondly, the quality constraint to be relaxed is removed from
the requirements database, and a new quality constraint is added. The new
constraint specifies a bound not on the value of the now random variable, but
on the probability that its value is in some range. Since t2,c was made into a
random variable in the first step, q(t2,c ≤ (1.1/3)(v1,m−3 + v1,m−2 + v1,m−1)) is
now replaced with q(P (t2,c ≤ (1.1/3)(v1,m−3 + v1,m−2 + v1,m−1)) ≥ 0.90), that
is, it is now required that the minimal probability should be 0.90 for t2,c to be at
most 110% of its three-month average. Letier & van Lamsweerde [20] suggested
probabilistic relaxation, and argued that this approach to relaxation is more
appropriate than fuzzy relaxation when there is quantitative data from which
to estimate probability distributions, or when experts are confident enough to
make assumptions about probability distributions.

Random variables and quality constraints thereon play an important role in
decision-making, as they are used to set desired probability levels over random
variables. In more informal terms, this means that one can write quality con-
straints and domain assumptions which reflect, respectively, the desired level
of confidence that the system behaves in some way, and the assumed level of
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confidence that may already be the case.
To illustrate how confidence can be expressed and used in domain assumptions,

consider the goal g(p3) in Figure 1. It has two operationalizations: one (t(u8))
involves the use of dispatch software to keep track of ambulance assignments, the
other (t(u9)) is manual and paper-based. The two operationalizations results in
different probability of erroneous ambulance assignments, and this is written, in
T5, k(t(u8) → q(P (v2,i ≥ 5) ≤ 0.10)) for t(u8) and k(t(u9) → q(P (v2,i ≥ 5) ≥
0.70)) for t(u9), where v2,i is the number of erroneous ambulance assignments on
day i. This introduces a criterion for the comparison of t(u8) and t(u9), and the
two domain assumptions reflect the belief that t(u8) is better on this criterion
(and independently from other criteria) than t(u9).

Fuzzy relaxation of a quality constraint involves three steps:

1. Remove the quality constraint,

2. Define a fuzzy membership function over the variable from the removed
quality constraint,

3. Define a softgoal over the variable from the removed quality constraint.

For illustration, consider again q(t2,c ≤ (1.1/3)(v1,m−3 + v1,m−2 + v1,m−1)) and
apply fuzzy relaxation. Start by removing this quality constraint from the
requirements database. A fuzzy membership function over t2,c, denote it µ(t2,c),
depends on how stakeholders evaluate in terms of desirability the various values
of t2,c. E.g., one could use µ(t2,c) = e−t2,c , so that the higher the value of
t2,c, the lower µ(t2,c) is, which reflects the idea that the more time it takes to
identify an incident location, the more the stakeholders are dissatisfied, whereby
their satisfaction increases as t2,c approaches 0. If one adopts µ as defined, the
quality constraint on t2,c is removed and the level of satisfaction is quantified as
a function of t2,c.

To finish with the fuzzy relaxation of the quality constraint on t2,c, a softgoal
needs to be added to the requirements database over values of t2,c. When used in
fuzzy relaxation, a softgoal is defined over a known variable: in this example, it
is reasonable to prefer lower over higher values of t2,c, and there is consequently
the following softgoal.

sg(p̃: Low t2,c)
def
=

(Let x1
def
= val(S1, t2,c) and x2

def
= val(S2, t2,c),

• if µ(x1) ≥ µ(x2), then add {k(t2,c = x1)} � {k(t2,c = x2)} to ∆,

• if µ(x1) > µ(x2), then add {k(t2,c = x1)} � {k(t2,c = x2)} to ∆,

• if µ(x1) = µ(x2), then add {k(t2,c = x1)} ≈ {k(t2,c = x2)} to ∆.)

Above, val(S1, t2,c) returns the value of t2,c in S1. Although the formulation
above seems very different from saying “Low t2,c”, this is precisely what it does.
Note that k(t2,c = x1) � k(t2,c = x2) says that satisfying k(t2,c = x1) is strictly
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more desirable than satisfying k(t2,c = x2). The softgoal gives a macro which
generates preference relations over domain assumptions. For any two candidate
solutions S1 and S2, the macro compares the values that t2,c has in each of
those two candidate solutions, and each of these values is recorded in a domain
assumption of the form t2,c = const where const is a constant.

Depending on the comparison between the constants, the macro adds a
preference relation to ∆. The macro ensures that if one compares two candidate
solutions, S1 and S2, and t2,c obtains the value x1 in S1 and the value x2 in
S2, then one will prefer over this criterion (independently of other criteria)
the candidate in which t2,s obtains the lower value. In other words, the macro
conveys the idea that, whenever two values of t2,c are given, the lower is preferred.

Fuzzy relaxation of a quality constraint over a variable v thus works by (i)
removing the quality constraint, (ii) adding a fuzzy membership function µ(v)
on v, (iii) interpreting µ(v) as the level of satisfaction with the value v, and (iv)
adding a softgoal macro which generates preference relations that reflect the
shape of µ.

9.2 Formalization

Semantic Domain. T5’s semantic domain includes clear and vague natural
language propositions, rational numbers, agents, and roles. T5 keeps all relations
from T4, and adds various primitive relations between rational numbers. These
relations have their standard definitions, and their list is given when syntax is
defined below.

Relations over rational numbers are either instances of the Quality constraint
concept, or of the Domain assumption concept. Expressions which state these
relations over variables which take rational numbers intensionally define sets of
rational numbers, i.e., those rational numbers which satisfy the relations stated
in the expression.

Syntax. The language L5 distinguishes the modeling LM5 and the decision-
making LD5 parts. Of the two, it is the modeling part that obtains symbols for
the representation of variables ranging over rational numbers, and symbols for
the relations between these variables.

The language L5 of T5 is the union L5 = LM5 ∪LD5 where every φ ∈ LM5 and
every φ̃ ∈ LD5 satisfies the following bnf specification in Equations 9.95–9.109:
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w ::= g(p) | k(p) | t(p) (9.95)

x ::= n | v | x+ x | x− x | x · x | x/x | xx (9.96)

y ::= x > x | x < x | x = x | x ≥ x | x ≤ x | x 6= x | x v pdf (9.97)

z ::= q(y) | k(y) | t(y) (9.98)

a ::= w | z (9.99)

b ::= Ra | Aa | cAa (9.100)

c ::= a | b | O(R,A) (9.101)

d ::= cM | cP | cH (9.102)

e ::= (

n≥1∧
i=1

ci)→ c | (
n≥1∧
i=1

ci)→ ⊥ (9.103)

f ::= k(e)M | k(e)P | k(e)H (9.104)

φ ::= d | f (9.105)

g ::= {d1, . . . , dn≥1} (9.106)

h ::= g � g | g ≈ g (9.107)

q ::= {h1, . . . , hn≥0} (9.108)

φ̃ ::= q | sg(p̃)← q | sk(p̃)← q | q → ⊥ (9.109)

The main change in syntax from T4 happens in the first four rules in the
bnf specification. With the first rule, which generates ws, natural language
propositions remain labeled with the three core modalities discussed since T1.
The second rule introduces n to stand for number symbols, v as variable symbol,
and symbols for arithmetic operations and exponentiation. The third rule
generates equality, inequality, and value comparisons, while x v pdf serves to
write that x follows a particular probability density function. The rest of the
rules, from b onwards, look exactly the same as in T4, but obviously allow new
expressions to be written.

Semantic Mapping. It is clear from the above how symbols are mapped to
objects in the semantic domain.

Consequence Relation. The consequence relation in T5 is |v4 extended to
detect inconsistency between constraints on numerical variables. This is handled
by adding a macro that generates axioms that allow inconsistency to be deduced
when constraints on numerical variables are such that there are no possible
assignments of values to these variables which ensure that all constraints are
satisfied.

Definition 9.1. For Π ⊆τ L5 and φ ∈ L5, the consequence relation |v5 is such
that:

• Π |v5 φ if φ ∈ Π, or
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• Π |v5 x if ∀1 ≤ n, Π |v5 φi and k((
∧n
i=1 φi)→ x) ∈ Π,

• |v5 satisfies the preference conflict axioms:

∀Πi,Πj ⊆ Π, {Πi � Πj ,Πj � Πi} → ⊥, (9.110)

∀Πi,Πj ⊆ Π, {Πi � Πj ,Πj � Πi} → ⊥, (9.111)

• |v5 satisfies the quantitative inconsistency axioms, generated by the following
macro:

For all Πk ⊆ Π in which there are expressions over rational
variables v1, . . . , vm, for m ≥ 1 in Π, if there is no assignment of
values to all variables v1, . . . , vm which satisfies all constraints
on these variables in Πk, then there is an axiom k((

∧
Πk) →

⊥)M ∈ L5.

�

Remarks on soundness and completeness made for |v1 and |v2 apply for |v5 .
Keeping |v5 simple and treating rational variables in an analogous way to nat-

ural language propositions are the main reasons for having |v5 treat requirements
over mathematical expressions in the same way as requirements over natural
language propositions. Another approach would have been to check if constraints
on a rational variable are not mutually exclusive, and if so, to block expressions
over that variable from passing through |v5 . Doing this would also require that
requirements over natural language propositions are blocked if they participate
in conflicts, which was not the case in T1–T4. It would also mean that the
consequence relation becomes much too specific, and less useful in the definitions
of various derived relations.

9.3 Problem & Solution Concepts

The formulation of the requirements problem is not significantly affected by the
introduction of rational variables and associated machinery. Quality constraints
are now mentioned alongside goals which may be given at the very start of re
(as opposed to being elicited or otherwise obtained during re).

Definition 9.2. Given a set of goals, quality constraints, domain assumptions,
and agents, find the solution which ranks highest according to the chosen decision
rule. �

The decision rule remains a macro which produces a ranking of candidate
solutions.

The main difference from solution concepts in T4 comes from the new
quantitative operationalization function. The original operationalization function
(cf., Definition 5.4) from simpler Techne formalisms remains applicable in T5,
but it is more appropriate to call it a qualitative operationalization function.

The quantitative operationalization relation returns all subsets of ∆k ∪∆t
from which φ can be deduced, where φ must be a requirement over rational
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variables. It thereby gives all information in the requirements database which
lead to rational variables taking values which satisfy some quality constraint.

Definition 9.3. Let Lz5 be the set of expressions of L5 such that every expression
is either a quality constraint, or a domain assumption, or a task over rational
variables. The quantitative operationalization function

Ov : (Lz5 ∩∆) −→ ℘

℘
⋃
∀x,y

∆
y
x

 (9.112)

for x ∈ {k, t} and y ∈ {M, P, H}.
Let ∀i, ni be a rational number and vi be a variable taking its value among

rational numbers. Let there be m such variables vi in φ, so that 1 ≤ i ≤ m. Ov
is defined as follows:

Π ∈ Ov(φ ∈ Lz5) if and only if:

1. Π 6|v5 ⊥, i.e., Π is consistent;

2. {x(vi = ni)
y ∈ Lz5 | 1 ≤ i ≤ m} ⊆ Π, i.e., Π includes requirements which

give equate variables in φ to values;

3. ∀i, 1 ≤ i ≤ m, one of more of the following hold:

(a) x(vi = ni)
y ∈

⋃
∀x,y ∆

y
x, i.e., x(vi = ni) is among domain assumptions

and tasks in ∆,

(b) ∃Φ ∈ Ov(x(vi = ni)
y) s.t. Φ ⊆ Π, i.e., Π includes a quantitative

operationalization of x(vi = ni)
y,

(c) ∃Φ ∈ Op(x(vi = ni)
y) s.t. Φ ⊆ Π, i.e., Π includes a qualitative

operationalization of x(vi = ni)
y,

4. and if every variable vi in φ is replaced with the constant ni, then the
mathematical expression in φ holds.

Every member Π of Ov(φ) is a consistent set which includes all require-
ments which (i) are operationalized, (ii) assign values to every rational variable
v1, . . . , vm in φ, and (iii) assign such constants n1, . . . , nm to the variables
v1, . . . , vm that the functional relation specified over these variables in φ holds.
Ov(φ) thereby states all combinations of requirements which assign such constants
to all variables in φ that φ is satisfied. �

The qualitative operationalization function is used in the following definition
of the threshold solution concept.

Definition 9.4. A threshold solution to the requirements problem given by a
requirements database ∆ ⊆ L5 is a set S ⊆τ ∆k ∪∆t of domain assumptions
and tasks, which satisfies the following four properties:

1. Consistency: S 6|v5 ⊥, i.e., all requirements in a threshold solution must be
consistent;
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2. Qualitative threshold achievement: ∀φ ∈ ∆M
g, ∃Π ∈ Op(φ) s.t. Π ⊆ S, i.e.,

a threshold solution must include at least one operationalization of every
Mandatory goal;

3. Quantitative threshold achievement: ∀φ ∈ ∆M
q, ∃Γ ∈ Ov(φ) such that

Γ ⊆ S, i.e., S must include a quantitative operationalization of every
Mandatory quality constraint;

4. Conformity: ∀φ ∈ ∆M

k ∪∆M

t , S |v4 φ, i.e., a threshold solution must satisfy
all Mandatory domain assumptions and all Mandatory tasks;

5. Minimality: 6 ∃S′ ⊂ S s.t. S′ satisfies the Consistency, Threshold achieve-
ment, and Conformity conditions, i.e., a threshold solution must include
only the requirements necessary to satisfy the three conditions above.

�

The threshold solution concepts in T4 and T5 differ only in that the latter has
the Quantitative threshold achievement condition, and renames the Threshold
achievement condition into Qualitative threshold achievement. This reflects the
introduction of quality constraints, and the possibility that the requirements
database includes Mandatory quality constraints.

Just as in T4, an expanded threshold solution is a candidate solution.

Definition 9.5. A candidate solution to the requirements problem given by a
requirements database ∆ ⊆ L5 is a set S ⊆τ ∆k ∪∆t of domain assumptions
and tasks, which satisfies the following four properties:

1. Threshold inclusion: ∃S′ ⊆τ S, where S′ is a threshold solution to the
requirements problem in ∆, i.e., S is equivalent or superset of a threshold
solution;

2. Expansion: there is a potentially empty Π ⊆ ∆k∪∆t such that S = S′∪Π,
i.e., there is a potentially empty set of domain assumptions and tasks
which are not Mandatory and which are included in S.

A candidate solution is either equal to a threshold solution (when Π is empty)
or is a threshold solution which was expanded by adding non-Mandatory tasks
and domain assumptions to it. �

9.4 Derived Relations

T5 keeps all relations from T4, and adds the quantitative conflict relation.

9.4.1 Quantitative Conflict Relations

A set of expressions of T5 can be such that it gives constraints on values of
rational variables, yet there is no possible assignment of values to all these
variables that satisfies these constraints. All expressions in that set are then said
to be in the quantitative conflict relation.
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Definition 9.6. There is a quantitative conflict relation between all members
of Π ⊆ L5 if and only if:

1. There are constraints on values of rational variables v1, . . . , vn, for n ≥ 1
in the expressions in Π,

2. There is no assignment of values to all variables v1, . . . , vn which satisfies
the constraints in the expressions in Π,

3. There is no Π′ ⊂ Π for which the conditions 1 and 2 above hold.

�

Quantitative conflict can be specialized onto Type-A, Type-B, and Type-C
quantitative conflict in the straightforward way, by analogy to the specialization
of the conflict relation in T1.

9.5 Database Interface

The database interface in T5 keeps all filters from T4 and adds filters specific
to quality constraints. These additional filters follow those defined for goals, as
quality constraints can be seen as goals over rational variables. The new filters
are as follows:

• All top-level quality constraints:

AQTop(∆) = {φ | φ ∈ ∆q and 6 ∃ψ ∈ ∆, φ ∈
⋃

Op(ψ)} (9.113)

• All quality constraints that have at least n qualitative operationalizations:

AQnOp(Π) = {φ | φ ∈ Πq and |Op(φ)| ≥ n} (9.114)

• All quality constraints that have at least n quantitative operationalizations:

AQnOv(Π) = {φ | φ ∈ Πq and |Ov(φ)| ≥ n} (9.115)

9.6 Discussion

This section focuses on how T5 can be used to model information that was
recognized as crucial in the research into the relaxation of requirements [20, 34, 4]
and the evaluation of their partial satisfaction [20].

Fuzzy Relaxation. Baresi et al. associate every fuzzy operator with a pre-
defined membership function. E.g., if there is a quality constraint q(v < 6hrs)
here (a goal G(v < 6hrs) for them, as they allow quantitative variables in goals),
then relaxing it would amount to replace it with q(v <f 6hrs) (in their notation,
G(v <f 6hrs)), where ≤f is a fuzzy operator. Their interpretation of v <f 6hrs is
that there is a fuzzy membership function µ which returns the level of satisfaction
as a function of v, and the shape of µ is predefined (for <f , it is positive and
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constant until v = 6, then decreases up to the satisfaction value 0 for some
v > 6). The operator <f can be defined in T5 by reproducing in a domain
assumption, a function which has the form of the fuzzy membership function
for <f , as defined by Baresi et al. One can define as follows a macro which
takes a fuzzy goal of the form G(v <f n), with n ∈ R, and transforms it into
requirements that can be added to a requirements database ∆ in T5:

∀G(v <f n) where v ∈ V and n ∈ R
add {k(v′ = µ(v))} to ∆, and apply the softgoal macro on ∆ and

v,
where v′ is a rational variable, i.e., v ∈ V , and µ is a function which is defined
according to the function pattern defined by Baresi et al. for the fuzzy operator
<f . It is straightforward to define similar macros for all other fuzzy operators
defined by Baresi et al.

Baresi et al. also define binary connectives, such as fuzzy conjunction.
These can be defined here as well, as functions of variables defined using fuzzy
membership functions. Each binary fuzzy operator gives one function specified
in a domain assumption and using an approximation relation. In the formalism
from Baresi et al., one way to define fuzzy conjunction ∧f between two variables
v1 and v2, each of which has an accompanying fuzzy membership function µ(v1)
and µ(v2), is as follows: µ(v1 ∧f v2) = µ(v1) · µ(v2). In T5, µ(v1) and µ(v2)
give satisfaction levels. The fuzzy conjunction connective between two quality
constraints, respectively over variables v1 and v2 is introduced in ∆ as the domain
assumption k(v3 = µ(v1) · µ(v2)), where v3 is the joint level of satisfaction over
variables v1 and v2.

Probabilistic Relaxation. To handle idealistic requirements, Letier & van
Lamsweerde [20] suggest the association of probability estimates to constraints
on quantitative variables. This is allowed in T5, and has been illustrated earlier
(cf., §9.1).

10 Case Study

The aim in this section is to discuss the features of the Techne formalisms in
the context of a complete case study obtained from an European information
technology consultancy.

10.1 Background

A large Asian electronics company designs, manufactures, and distributes mobile
phones and tablet devices in all European countries.

The company asked the consultancy to engineer a system which should
manage orders from shops, data collection by merchandisers, the synthesis and
reporting of merchandising data, and information distribution to and sharing
between salespeople.
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These four rough requiremenets fit together as follows. When the company
delivers some quantity of a new product to a country, shops order these products.
The company itself has no shops. The system should handle these orders,
mainly by allowing shop managers to make and track orders. After a product
is delivered to, anywhere from hundreds to thousands of shops, the company
needs to assess how well the product is marketed in these shops, as this directly
influences sales numbers. To do so, the company sends at a certain frequency its
merchandisers to visit every shop. A merchandiser visits a shop, observes how
the company’s products are marketed, talks to salespeople at the shop, and fills
out a questionnaire. The system should deliver questions and collect answers
remotely, as the company’s plan is for every merchandiser to carry a tablet
device enabled for mobile Internet access. The system should allow company’s
employees to view the data collected at the shops, and produce reports showing
different subsets of that data. Based on the analysis of the data, the company
wishes to use the system to inform and train salespeople. The system should
allow the company to send out information about products and otehrwise to
salespeople working in shops.

Requirements were given verbally at meetings with several managers and
engineers of one European branch of the company. There were no legacy systems
to which the new system should connect, or which otherwise influence the
engineering of the future system. Requirements given initially were severely
incomplete and imprecise. The company expected of the consultancy to do
requirements engineering in iterations and to assist the company at each iteration
in brainstorming about the goals, functionalities, and other characteristics and
behaviors of the system-to-be. In other words, requirements engineering had to
help explore the problem and solution space. It had to use lightweight notations,
as early solutions or parts thereof could end up rejected at later iterations.
Finally, it had to use a notation that can be understandable to the client’s
personnel, without having to train them in the specifics of a notation.

In the rest of this section, the system-to-be is called the Shop Network
Management (snm) system.

10.2 Building up the Requirements Database

High-level goals of snm are:
g(p1: Data can be collected at shops)M

g(p2: Reports can be created from data)M

g(p3: Tasks can be allocated to merchandisers)M

g(p4: Merchandisers can be supervised)M

g(p5: Salesmen can receive information)M

g(p6: Shops can order products)M

g(p7: Shops can track product orders)M

g(p8: Salesmen can access question and answer database)M

The company required that reports need to be customizable. More specifically,
this means that instead of predefining a set of report templates and hardcoding
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them, templates should be definable through the system. It was considered as
crucial that the snm is responsive, easy to use, and that it can appropriately
handle exceptions. An example of an exception is the situation when the
merchandiser is at a shop where she has no fast Internet access, yet she wishes to
add images to the report about that shop. Since all these additional expectations
involve vagueness, the following softgoals are added to the database:
sg(q̃1: Customizable reports)

sg(q̃2: User interfaces quickly respond to input)

sg(q̃3: Easy to use)

sg(q̃4: Appropriately handle exceptions)

Broad constraints are imposed on how the goals can be satisfied. As they
amount to assumptions about what is (not) feasible, the constraints are captured
as domain assumptions.
k(p9: Every merchandiser is given a tablet device which is enabled for mobile

Internet access)M

k(p10: There always exist shops in regions without third generation mobile Internet
access and without Wi-Fi Internet access)M

k(p11: There can exist products which are sold in shops, but are not in the product
database)M

The softgoals will give preferences over alternative refinements and oper-
ationalizations of the goals. The softgoals thus remain only recorded for the
moment, without being used. The next step is to add details to goals. One way
to do so would be to allocate the goals to roles. The following roles are relevant:

R1: Merchandiser

R2: Supervisor of merchandisers

R3: Analyst at the company

R4: snm web software

R5: snm mobile software

R6: Shop manager

R7: Shop salesman

The problem is that the goals are not detailed enough to make their allocation
to roles. E.g., it may seem reasonable to add R1g(p1), but this is not adequate:
collection of data at shops involves four roles, not one – the Marchandiser
who will be collecting data, the snm web software which delivers guidelines for
data collection (namely, the questionnaire), the snm mobile software which the
Merchandiser uses to input data, and the Supervisor of merchandisers, who
needs to define the questionnaires and allocate questionnaires and shops to
Merchandisers. It is more useful to focus on adding details to the goals first,
then allocate them to roles.

Collection of data at shops (g(p1)M). Discussing g(p1) leads to new goals:
g(p12: Merchandiser can access the snm mobile software)H

g(p13: snm mobile software and snm web software can exchange data)H

86



g(p14: Personal task list can be viewed)H

g(p15: Each task in a personal task list instructs a visit to a shop)M

g(p16: Shop questionnaire can be accessed)M

g(p17: Shop questionnaire can be filled out)M

g(p18: Filled-out questionnaire can be uploaded to the snm web software)M

The goals above refine g(p1), so that the following axiom is added:

k

(
14∧

i=12

g(pi)
H ∧

18∧
j=15

g(pj)
M → g(p1)M

)M

The goals in the refinement are either mandatory like g(p1)M, or inherit the
mandatory modality from that goal. The reason for having different optionality
modalities on the goals in the refinement, is that changes to the optionality
modality of g(p1) should not affect some of the goals in a refinement. The
goals g(p16), g(p17) and g(p18) are crucial, independently of the refined goal. It
is important to see that while g(p1) is refined by these goals, and they have
been identified by investigating g(p1), goals in a refinement (and more generally,
requirements in a premise of an argument) can be of interest independently
from the goal that they refine (i.e., the conclusion of an argument). While the
Inherited modality can be used on all members of a refinement, it need not always
be used over all members of all refinements.

Softgoals and preferred goals on data collection at shops. New goals
suggest new softgoals, to say more about how well the goals ought to be satisfied;
in addition, a preferred goal was suggested:
sg(q̃5: Communication is secure between snm web and mobile software)

sg(q̃6: Minimize fictional shop reports sent without having visited the shop)

g(p19: Supervisor of merchandisers and Merchandiser can communicate about
tasks using the snm web and mobile software)P

Problem of fictional shop reports (sg(q̃6)). The softgoal sg(q̃6) reflects the
case of a merchandiser filling out a report about a shop without having visited
that shop, or basing the report on a past visit to that shop (a visit for which
a report was already filed). The following domain assumptions can be used to
state the problem in the requirements database:
k(p20: There is no verification of the Merchandiser having visited a shop before

sending a report for that shop)P

k(p21: Fictional reports can be sent to snm)P

k
(
k(p20)P → k(p21)P

)M
Making k(k(p20)P → k(p21)P) mandatory indicates that it is inevitable that if

there is no verification of shop visits, then there will be fictional reports. Making
the antecedent and the consequent preferred indicates that while they can be
satisfied, there can also be solutions which violate them.
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First option to avoid fictional reports. There are at least two ways to
solve the problem of fictional reports, and each is captured by inference relations.
One option is to require Shop managers to confirm a shop visit through the snm
web software:
g(p22: Shop manager confirms shop visit by Merchandiser)H

g(p23: Shop manager can use snm web software to confirm shop visit by
Merchandiser)H

k
(
g(p22)H ∧ g(p23)H → g(p17)M

)M
Since this is intended to ensure that k(p21)P is avoided, there is also the

conflict:

k
(
g(p22)H ∧ k(p20)P → ⊥

)M

Second option to avoid fictional reports. Another option is to determine
by gps the location of the Merchandiser, when she requests to access a question-
naire, and allow the Merchandiser to fill out the questionnaire if she is within
some distance of the shop location.
k(p24: Location can be determined by the tablet device using gps)H

t(p25: Merchandiser requests access to shop questionnaire)H

g(p26: Current location known)H

k
(
k(p24)H ∧ t(p25)H → g(p26)H

)M
q( LocErr ≤ 10m, where LocErr is the number of meters between the current

location reported by gps of tablet device and the location recorded for a
shop)H

t(p27: Compute LocErr)H

k
(
g(p26)H ∧ t(p27)H ∧ q(LocErr ≤ 10m)H → g(p17)M

)M
There is again a conflict, to indicate that k(p21)P is avoided if current location

is known, the value of LocErr is computed and is is lower than the limit set in
the quality constraint:

k
(
g(p26)H ∧ t(p27)H ∧ q(LocErr ≤ 10m)H ∧ k(p20)P → ⊥

)M

Relaxation of LocErr limit. The 10m limit is arbitrary in the quality con-
traint q(LocErr ≤ 10m)H. Some shops can be big enough that the quality
constraint is violated even if the Merchandiser is in fact in the shop. This
problem can be made explicit in the database as follows:
k(p28: Surface plans are not known for each shop.)M

k(p29: There is no unique appropriate limit value below 1000m for LocErr.)M

k
(
k(p28)M → k(p29)M

)M
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Macro 1 begins.

For each q(LocErr X Ym)Z such that X ∈ {<,=, >,≤, 6=,≥}, Y ∈ Q≥0, and
Z ∈ {M, P, H}, add

k
(
k(p29)M ∧ q(LocErr X Ym)Z → ⊥

)M

to ∆.
Macro 1 ends.

The macro indicates that there will be a conflict between k(p29)M and any
quality constraint on LocErr. Q≥0 is the set of rational numbers greater than,
and including 0.

Because k(p29)M is mandatory, an option to avoid the conflicts generated by
the macro above is to avoid having quality constraints on the value of LocErr. To
do so, relax all quality constraints on LocErr. Between fuzzy and probabilistic
relaxation, fuzzy relaxation seems more appropriate in this case. Probabilistic
relaxation would constrain the frequency of the Merchandiser being beyond some
LocErr value (i.e., being “too far” from a shop). Fuzzy relaxation instead gives
an entirely subjective function which returns a satisfaction level for a particular
LocErr value. Although the shape of the satisfaction function will remain based
on subjective considerations, it can be agreed upon through the discussion with
the system stakeholders. Suppose that the following shape was agreed on: the
closer LocErr is to 0, the higher the satisfaction level (with maximum 1), but if
LocErr is equal or greater than 500m, the satisfaction level is 0. The satisfaction
function SatLocErr is defined as follows in the requirements database:

k

(
SatLocErr(LocErr) =

{
1− LocErr/500 if LocErr < 500;

0 otherwise.

)M

To complete fuzzy relaxation, a softgoal is needed over values of LocErr. That
softgoal should be a macro, in order to serve for the comparison of alternative
solutions. Now, remark that the system-to-be will have to record LocErr for
every Merchandiser and for every visit to a shop. If different solutions to the
requirements problem will affect LocErr differently, then these differences should
be identifiable from comparing means and variances of over some sample of
LocErr values. Lower means and lower variances are obviously preferred, leading
to the following softgoals and the corresponding macros which generate preference
relations. It is assumed for simplicity that LocErr values are equally probable;
also, Sj and Sk are arbitrary candidate solutions to the requirements problem.
sg(q̃7: Low E[LocErr] = 1

nw

∑nw
i=1 LocErri, where nw is the number of recorded

LocErr values during w-th week)

sg(q̃8: Low Var(LocErr) = 1
nw

∑nw
i=1 LocErr2

i − E[LocErr]2, where nw is the num-
ber of recorded LocErr values during w-th week)
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Macro 2 begins.

sg(q̃7)
def
= (

Let xj
def
= val(Sj , E[LocErr]) and xk

def
= val(Sk, E[LocErr]),

• if SatLocErr(xj) ≥ SatLocErr(xk), then add {k(E[LocErr] = xk)} �
{k(E[LocErr] = xj)} to ∆,

• if SatLocErr(xj) > SatLocErr(xk), then add {k(E[LocErr] = xk)} �
{k(E[LocErr] = xj)} to ∆,

• if SatLocErr(xj) = SatLocErr(xk), then add {k(E[LocErr] = xk)} ≈
{k(E[LocErr] = xj)} to ∆.)

Macro 2 ends.

Macro 3 begins.

sg(q̃8)
def
= (

Let xj
def
= val(Sj ,Var[LocErr]) and xk

def
= val(Sk,Var[LocErr]),

• if SatLocErr(xj) ≥ SatLocErr(xk), then add {k(Var[LocErr] = xk)} �
{k(Var[LocErr] = xj)} to ∆,

• if SatLocErr(xj) > SatLocErr(xk), then add {k(Var[LocErr] = xk)} �
{k(Var[LocErr] = xj)} to ∆,

• if SatLocErr(xj) = SatLocErr(xk), then add {k(Var[LocErr] = xk)} ≈
{k(Var[LocErr] = xj)} to ∆.)

Macro 3 ends.

Values for E[LocErr] and Var[LocErr] are straightforward to compute, when
given a sample of LocErr values. The mechanism which will generate these values
in the system-to-be are the actual visits made to shop. During re, this process
can be simulated. This in turn requires domain assumptions which satisfy two
conditions. Firstly, no two of them should be in the same candidate solution,
for doing otherwise would require specifying when each assumption applies
(which can be done in Techne by making each of these domain assumptions
conclusions of an argument and having applicability conditions in the premises
of the argument, but adds unnecessary complications in the present discussion).
This first condition is achieved by adding conflict relations between domain
assumptions that generate LocErr values. Secondly, each of these domain
assumptions needs to return LocErr values. This can be accomplished in many
different ways, including:

• Making LocErr follow a probability distribution function (i.e., LocErr is
treated as a random variable), e.g., a normal distribution with mean of
50m and variance of 20m2: k(LocErr v N (50m, 20m2)). this means that
if two candidate solutions should significantly differ over LocErr mean
and variance, then it is needed to have LocErr follow different probability
distribution functions in each candidate solution.

• Making LocErr a function of other variables, whereby these other variables
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may include random variables. This allows for a potentially elaborate
model to be defined, which would give LocErr values. E.g., ErrLoc =
f(v1, . . . , vn), where each vj in some subset of these variables would be a
binary variable indicating the kind of environment in which the shop is
located. As shop questionnaires include a multiple choice question which
asks for a description of the shop environment, a predictive model could be
fit to past data, where the estimated coefficient of each of these variables
would indicate the influence of location on LocErr. This would in turn
reflect the company analysts’ intuition that the “nicer” the environment
of a shop, the less likely the shop will be surveyed and the more likely
the questionnaire would be filled out outside the shop (and in that “nicer”
environment). Candidate solutions may then differ in how they influence
the values of the coefficients in the predictive model, and thereby result in
different ErrLoc values.

Regardless of the mechanism chosen to simulate the values of ErrLoc, adding
it results in a quantitative operationalization relation between the domain
assumption stating that mechanism and the domain assumption which assigns a
value to ErrLoc.

Suppose that it is decided to treat LocErr as a random variable, and that it
should follow a normal distribution in every candidate solution. At this point,
no complete candidate solution is known. It can, however, be assumed that if
a policy is adopted to randomly verify if a Merchandiser visited a shop, then
the mean of LocErr should be lower than if that policy is not adopted. Every
candidate solution which satisfies that policy should then have lower mean and
variance than a candidate which does not satisfy the same policy. The result of
this discussion is to add the following to the requirements database:
g(p30: Perform random verifications of shop visits)P

k( LocErr v N (35m, 15m2))P

k( LocErr v N (50m, 20m2))P

k
(
k(p30)P → k(LocErr v N (35m, 15m2))P

)M
k
(
k(LocErr v N (35m, 15m2))P ∧ k(LocErr v N (50m, 20m2))P → ⊥

)M
The requirements above give two alternative distributions for LocErr, and

say that the mean and variance will be lower if g(p30)P is satisfied. When
sample values of LocErr are generated by following these probability distribution
functions, the values of E[LocErr] and V ar[LocErr] can be computed according
to each distribution function, and the Macros 2 and 3 applied to obtain preference
preference relations. As the rule of large numbers applies, it is not necessary to
generate values. Rather, the mean and variance can be compared, resulting in
the following preference relations:
{k(E[LocErr] = 35m)P} � {k(E[LocErr] = 50m)P}
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sg(q̃7)← {
{k(E[LocErr] = 35m)P} � {k(E[LocErr] = 50m)P}
}

{k(Var[LocErr] = 15m2)P} � {k(Var[LocErr] = 20m2)P}
sg(q̃8)← {

{k(Var[LocErr] = 15m2)P} � {k(Var[LocErr] = 20m2)P}
}

Conditions to fill out a shop questionnaire. The discussions above which
focused on the fictional shop reports, namely on how to minimize their number.
It was required that there be a visit to a shop before it becomes possible for
the Merchandiser to fill out a questionnaire. The first option required that
verification be manual, as it asks that the Shop manager can satisfy g(p22)H and
that the Shop manager can do so via the snm web software. Both these goals
are delimited enough that they can be allocated to the said roles:
(R6g(p22)H)H

(R4g(p23)H)H

The second option is to use gps to determine the location of the Merchandiser
when she requests to access the shop questionnaire. The distance to shop location,
i.e., the value of LocErr, plays a key role in this approach, as it is not feasible
to ask the Merchandiser to be at the exact coordinates known for a shop, but
within some distance of the shop. The task t(p27)H of computing the value of
LocErr is the responsibility of snm mobile software:
(R5t(p27)H)H

Revisiting the Inherited modality. Observe that the responsibility alloca-
tions above are over requirements which carry the Inherited optionality modality,
and that as a result, responsibility allocations themselves must carry that same
modality. It is, however, not clear from the relations introduced up to this point
which optionality modality these responsibility allocations would obtain. The
rule which is not part of Techne, but which can be applied is that an agency, re-
sponsibility, or commitment relation, which has the Inherited optionality modality
inherits the optionality modality of the requirement which it ties to the role or
agent. If applied, this rule makes, e.g., R5t(p27)H inherit the Mandatory modality
if the chosen operationalization of g(p17)M includes t(p27)H (which itself will then
inherit the Mandatory modality, by being in the premises of the argument for
g(p17)M).

Refining g(p12)M. Access to snm mobile software requires that the Merchan-
diser logs in, that the snm web software has been configured by the Supervisor
of merchandisers to allow the Merchandiser access, and that the snm mobile
software is running. This gives a straightforward refinement of g(p12)M:
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g(p31: snm mobile software is running.)H

g(p32: Provide correct username and password at login.)H

g(p33: Merchandiser is allowed access to snm mobile software.)H

k
(
g(p31)H ∧ g(p32)H ∧ g(p33)H → g(p12)M

)M
(R5g(p31)H)H

(R1g(p32)H)H

(R2g(p33)H)H

If the goal g(p12)M is made the responsibility of the Merchandiser, then
dependency relations can be defined based on the refinement above. Since no
actual agents who would occupy these roles are known at this time, a macro is used
to add dependency relations after agents have been added to the requirements
database.
(R1g(p12)M)H

Macro 4 begins.

For each Ai such that O(R1,Ai) ∈ ∆, add

k
(
g(p31)H ∧ g(p32)H ∧ g(p33)H → Aig(p12)M

)M
to ∆
Macro 4 ends.

An obvious exception which can occur and block the satisfaction of g(p12)M

is if the Merchandiser forgets the credentials needed to login. This can be stated
with a domain assumption and a Type-B conflict relation (cf., Definition 5.14),
as follows:
k(p34: Merchandisers may forget login credentials.)M

(R1k(p34)M)M

k
(
k(p34)M ∧ g(p32)H → ⊥

)M
A straightforward two-step approach to resolve this conflict is firstly to add

new requirements that there must be a procedure by which the Merchandiser
can recover login credentials. The second step is then to remove both the domain
assumption which acts as the blocker and the responsibility assignment of that
domain assumption to the Merchandiser role. The two steps are:

1. Add the following goal and conflict to the requirements database:
g(p35: Merchandiser can recover login credentials)M

k
(
g(p35)M ∧ k(p34)M → ⊥

)M
2. Because the goal and conflict just added reflect the modeler’s intention to

eliminate the conflict due to the blocker k(p34)M, both the blocker and the
conflict relation are to be deleted from the requirements database – i.e.,
eliminate k(p34)M, R1(k(p34)M)M, and k(k(p34)M ∧ g(p32)H → ⊥)M.
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Since there are best practices on how the recovery of login credentials should
work, g(p35)M can be operationalized without adding too much detail early on
in the re process. Instead, a task is assigned to the Software engineer role, as
follows:
t(p36: Implement best practice login credentials recovery process.)H

k
(
t(p36)H → g(p35)M

)M
R8: Software engineer

(R8t(p36)H)H

Operationalization of g(p13)H. Making it possible for snm mobile and web
software to exchange data requires the use of some infrastructure that would allow
such data to be exchanged. There are two straightforward options, captured via
two alternative operationalizations of g(p13)H.

• Option 1 below consists of having the snm mobile and web software ex-
change data over the Internet:
t(p37: Implement data exchange using the Internet Protocol Suite.)H

t(p38: Implement the snm mobile software as a Google Android application.)H

t(p39: Implement the snm web software as a web application.)H

k
(
t(p37)H ∧ t(p38)H ∧ t(p39)H → g(p13)H

)M
• Option 2 below is to exchange data by having the snm mobile application

connect – independently of the Internet – to the company’s intranet:
t(p40: Implement data exchange using a proprietary protocol.)H

t(p41: Implement the snm web software as an intranet server application which is
not connected to the Internet.)H

k
(
t(p38)H ∧ t(p40)H ∧ t(p41)H → g(p13)H

)M
A contract relation is added to make sure these two options are alternatives,

and that under no conditions would one be willing to implement them both:

k
(
t(p37)H ∧ t(p40)H → ⊥

)M
Observe that the conflict relation is between two alternatives (in the sense of

Definition 5.12), making this a Type-A conflict (cf., Definition 5.13). It follows
that we should not resolve it immediately (by choosing one of the alternatives
and deleting the other) – the reason for avoiding resolution this early is that a
qualitative tradeoff relation could be identified between these alternatives, and
the choice of one over another thus becomes less straightforward. Recall that
according to sg(q̃5), communication between the snm web and mobile software
should be secure. This suggests strict preference for communication to happen
via the company intranet, not through the Internet, that is:
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{t(p38)H, t(p40)H, t(p41)H} � {t(p37)H, t(p38)H, t(p39)H}
sg(q̃5)← {

{t(p38)H, t(p40)H, t(p41)H} � {t(p37)H, t(p38)H, t(p39)H}
}

This direction of preference is problematic when the two alternatives are
compared in terms of cost. It is reasonable to assume that setting up the intranet
to handle the exchange of data between the mobile and web applications requires
the purchasing of licenses to software that would manage that exchange, while
there would be no such costs when Internet is used as the infrastructure for
data exchange. The softgoal and the corresponding preference generated by that
softgoal are:
sg(q̃9: Keep the cost of snm low)

{t(p37)H, t(p38)H, t(p39)H} � {t(p38)H, t(p40)H, t(p41)H}
sg(q̃9)← {

{t(p37)H, t(p38)H, t(p39)H} � {t(p38)H, t(p40)H, t(p41)H}
}

It can be easily verified that because of these preference relations, there is
a qualitative tradeoff relation between the two options. Tolerating the conflict
between the two options keeps both in the requirements database, and thereby
allows further discussion of the tradeoff between the stakeholders, rather than
its premature resolution.

In both options, the tasks are the responsibilities of the Software engineer
role:
(R8t(p37)H)H

(R8t(p38)H)H

(R8t(p39)H)H

(R8t(p40)H)H

(R8t(p41)H)H

Refining g(p14).
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11 Conclusions

Techne was presented as a family of mathematical formalisms. Each one formal-
izes within a propositional framework various concepts and relations suggested
and discussed separately in prior work. Techne shows how choices of concepts
and relations to have in a language result in different requirements problem
and solution concepts. Techne illustrates how various prior ideas can be fitted
together within the same language. Figure 3 summarizes the types of information
that each Techne formalism can represent, and distinguishes primitive concepts
and relations from derived ones.

Four issues were not discussed in this paper: automated reasoning to find
solutions in each Techne formalism, nesting of modalities (i.e., allowing, e.g.,
g(t(p)) to be an expression), which decision rules are relevant in Techne for-
malisms having the preference relation, and the visualization of requirements
databases.
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